1,161 research outputs found

    The hydromagnetic stability of the magnetospheric boundary, Planet

    Get PDF
    Abstract-The hydromagnetic Kelvin-Helmholtz stability problem is studied for an infinite plane interface between compressible infinitely conducting fluids. The critical value of the relative streaming velocity for stability is studied by use of the equations for marginal stability without making the simplifying physical assumptions used by previous authors. In application to the magnetosphere boundary we find we can make some predictions without too precise a knowledge of all the parameters involved. At middle and low latitudes the first growing modes propagate across the Earth's field with a very low phase velocity and wave fronts closely aligned to meridian planes. The modes tend to exhibit circular polarisation in a plane almost perpendicular to the Earth's field. This behaviour should also occur at high latitudes when the magnetosheath field is closely aligned to he Earth's field

    How a realistic magnetosphere alters the polarizations of surface, fast magnetosonic, and Alfvén waves

    Get PDF
    Funding: MOA holds a UKRI (STFC / EPSRC) Stephen Hawking Fellowship EP/T01735X/1. DJS was supported by STFC grant ST/S000364/1. MDH was supported by NASA grant 80NSSC19K0127. A.N.W. was partially funded by STFC grant ST/N000609/1.System-scale magnetohydrodynamic (MHD) waves within Earth?s magnetosphere are often understood theoretically using box models. While these have been highly instructive in understanding many fundamental features of the various wave modes present, they neglect the complexities of geospace such as the inhomogeneities and curvilinear geometries present. Here we show global MHD simulations of resonant waves impulsively-excited by a solar wind pressure pulse. Although many aspects of the surface, fast magnetosonic (cavity/waveguide), and Alfvén modes present agree with the box and axially symmetric dipole models, we find some predictions for large-scale waves are significantly altered in a realistic magnetosphere. The radial ordering of fast mode turning points and Alfvén resonant locations may be reversed even with monotonic wave speeds. Additional nodes along field lines that are not present in the displacement/velocity occur in both the perpendicular and compressional components of the magnetic field. Close to the magnetopause the perpendicular oscillations of the magnetic field have the opposite handedness to the velocity. Finally, widely-used detection techniques for standing waves, both across and along the field, can fail to identify their presence. We explain how all these features arise from the MHD equations when accounting for a non-uniform background field and propose modified methods which might be applied to spacecraft observations.Publisher PDFPeer reviewe

    Comparison of Two Detailed Models of Aedes aegypti Population Dynamics

    Get PDF
    The success of control programs for mosquito-­borne diseases can be enhanced by crucial information provided by models of the mosquito populations. Models, however, can differ in their structure, complexity, and biological assumptions, and these differences impact their predictions. Unfortunately, it is typically difficult to determine why two complex models make different predictions because we lack structured side-­by-­side comparisons of models using comparable parameterization. Here, we present a detailed comparison of two complex, spatially explicit, stochastic models of the population dynamics of Aedes aegypti, the main vector of dengue, yellow fever, chikungunya, and Zika viruses. Both models describe the mosquito?s biological and ecological characteristics, but differ in complexity and specific assumptions. We compare the predictions of these models in two selected climatic settings: a tropical and weakly seasonal climate in Iquitos, Peru, and a temperate and strongly seasonal climate in Buenos Aires, Argentina. Both models were calibrated to operate at identical average densities in unperturbedconditions in both settings, by adjusting parameters regulating densities in each model (number of larval development sites and amount of nutritional resources). We show that the models differ in their sensitivityto environmental conditions (temperature and rainfall) and trace differences to specific model assumptions.Temporal dynamics of the Ae. aegypti populations predicted by the two models differ more markedly under strongly seasonal Buenos Aires conditions. We use both models to simulate killing of larvae and/or adults with insecticides in selected areas. We show that predictions of population recovery by the models differ substantially, an effect likely related to model assumptions regarding larval development and (director delayed) density dependence. Our methodical comparison provides important guidance for model improvement by identifying key areas of Ae. aegypti ecology that substantially affect model predictions, and revealing the impact of model assumptions on population dynamics predictions in unperturbed and perturbed conditions.Fil: Legros, Mathieu. University of North Carolina; Estados UnidosFil: Otero, Marcelo Javier. Universidad de Buenos Aires; ArgentinaFil: Romeo Aznar, Victoria Teresa. Universidad de Buenos Aires; ArgentinaFil: Solari, Hernan Gustavo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Gould, Fred. National Institutes of Health; Estados UnidosFil: Lloyd, Alun L.. National Institutes of Health; Estados Unido

    Why the Realist-Instrumentalist Debate about Rational Choice Rests on a Mistake

    Get PDF
    Within the social sciences, much controversy exists about which status should be ascribed to the rationality assumption that forms the core of rational choice theories. Whilst realists argue that the rationality assumption is an empirical claim which describes real processes that cause individual action, instrumentalists maintain that it amounts to nothing more than an analytically set axiom or ‘as if’ hypothesis which helps in the generation of accurate predictions. In this paper, I argue that this realist-instrumentalist debate about rational choice theory can be overcome once it is realised that the rationality assumption is neither an empirical description nor an ‘as if’ hypothesis, but a normative claim

    "Actual" does not imply "feasible"

    Get PDF
    The familiar complaint that some ambitious proposal is infeasible naturally invites the following response: Once upon a time, the abolition of slavery and the enfranchisement of women seemed infeasible, yet these things were actually achieved. Presumably, then, many of those things that seem infeasible in our own time may well be achieved too and, thus, turn out to have been perfectly feasible after all. The Appeal to History, as we call it, is a bad argument. It is not true that if some desirable state of affairs was actually achieved, then it was feasible that it was achieved. “Actual” does not imply “feasible,” as we put it. Here is our objection. “Feasible” implies “not counterfactually fluky.” But “actual” does not imply “not counterfactually fluky.” So, “actual” does not imply “feasible.” While something like the Flukiness Objection is sometimes hinted at in the context of the related literature on abilities, it has not been developed in any detail, and both premises are inadequately motivated. We offer a novel articulation of the Flukiness Objection that is both more precise and better motivated. Our conclusions have important implications, not only for the admissible use of history in normative argument, but also by potentially circumscribing the normative claims that are applicable to us

    Saturn's Auroral Field-Aligned Currents: Observations from the Northern Hemisphere Dawn Sector During Cassini's Proximal Orbits

    Get PDF
    We examine the azimuthal magnetic field signatures associated with Saturn's northern hemisphere auroral field‐aligned currents observed in the dawn sector during Cassini's Proximal orbits (April 2017 and September 2017). We compare these currents with observations of the auroral currents from near noon taken during the F‐ring orbits prior to the Proximal orbits. First, we show that the position of the main auroral upward current is displaced poleward between the two local times (LTs). This is consistent with the statistical position of the ultraviolet auroral oval for the same time interval. Second, we show the overall average ionospheric meridional current profile differs significantly on the equatorward boundary of the upward current with a swept‐forward configuration with respect to planetary rotation present at dawn. We separate the planetary period oscillation (PPO) currents from the PPO‐independent currents and show their positional relationship is maintained as the latitude of the current shifts in LT implying an intrinsic link between the two systems. Focusing on the individual upward current sheets pass‐by‐pass, we find that the main upward current at dawn is stronger compared to near noon. This results in the current density being ~1.4 times higher in the dawn sector. We determine a proxy for the precipitating electron power and show that the dawn PPO‐independent upward current electron power is ~1.9 times higher than at noon. These new observations of the dawn auroral region from the Proximal orbits may show evidence of an additional upward current at dawn likely associated with strong flows in the outer magnetosphere

    Is tagging with visual implant elastomer a reliable technique for marking earthworms?

    Get PDF
    Visual implant elastomer (VIE) has recently been employed to investigate different aspects of earthworm ecology. However, a number of fundamental questions relating to the detection and positioning of the tag, its persistence and potential effects on earthworms remain unknown. Seven earthworm species belonging to three ecological groupings, with different pigmentation and burrowing behaviour, were tagged using different coloured VIE. External inspection after two days, one week and 1, 10 and 27 months were followed by preservation, dissection and internal inspection. Tags could be seen in living specimens to 27 months, and dissection revealed that in most cases they were lodged in the coelomic cavity, held in place by septa. However, over longer time periods (more than two years), the chlorogogenous tissue tended to bind to the tags and made external observation increasingly difficult. Migration of the VIE material towards the posterior of the earthworm and potential loss of the tag were only observed on rare occasions, and a recovery rate in excess of 98% was recorded. By introducing a reasonable amount of VIE into segments, just after the clitellum, this technique can become a valuable tool in earthworm ecology and life history studies, particularly in short-medium term laboratory and field experiments
    • 

    corecore