992 research outputs found

    Évaluation de l'applicabilité d'une méthode statistique aux variations saisonnières des relations concentration-débit sur un petit cours d'eau

    Get PDF
    Les paramètres chimiques jouent un rôle important dans l'équilibre des écosystèmes aquatiques. De nombreuses études ont déjà démontré que les caractéristiques chimiques d'un cours d'eau peuvent changer avec les saisons. Cette étude a pour but de revoir les relations débit- concentration sur un petit cours d'eau, dans le contexte des variations entre deux périodes climatiques. Pour ce faire, une analyse de régression entre le débit et six paramètres de qualité de d'eau (sodium, magnésium, conductivité, pH, azote total et le carbone organique dissous) provenant d'un petit bassin versant forestier (ruisseau Catamaran, N.-B., Canada) a été réalisée afin de déterminer la différence entre la saison sans glace et la saison avec glace. Des échantillons mensuels d'eau ont été récoltés sur le ruisseau Catamaran depuis 1990. Les analyses chimiques faites sur ses échantillons ont permis de déterminer les concentrations des paramètre étudiés. La plupart des variables de qualité ont démontré une relation significative avec le débit, sauf l'azote total. Les coefficients de détermination variaient entre 0.752 et 0.898, exception faite du carbone organique dissous dont le r2 était de 0.294. La conductivité était le paramètre dont le débit expliquait le plus la variance. Une étude des rapports des sommes des carrés des résidus a permis de déterminer que seul le pH requiert un modèle différent pour la période sans glace et la saison avec glace. Les variations saisonnières de la relation débit-pH revêt une importance significative pour les ruisseaux comme celui de Catamaran, qui incluent de nombreux habitats pour le saumon de l'Atlantique. Les résultats des analyses de régressions indiquent que lorsque la géochimie est plus complexe, comme c'est le cas pour le pH, il faut diviser les séries temporelles en sous-composantes saisonnières avant de tenter d'établir une relation débit-concentration.The chemical composition of water is of great importance to ecosystem functioning and in habitat management. Many studies have already shown that the chemical characteristics of a stream change with seasons. These variations have a strong impact on the ecosystem, especially on fish populations. The objective of this study is to quantify the relationship between the logarithm of discharge and six water quality parameters (sodium, magnesium, conductivity, pH, dissolved organic carbon and total nitrogen) for a small forested catchment (Catamaran Brook, N.B., Canada) and to verify the importance of seasonality. Monthly water samples have been gathered at Catamaran Brook since 1990. Detailed water chemistry performed on these samples provided a data base for this project. Various linear regression models were tested to verify if regressions were required for the winter season. The criterion used was the ratio of the squared sum of residuals for each data set, which follows a Fisher distribution. Of the six water quality parameters, all except total nitrogen showed a significant relationship with discharge. On an annual basis, the coefficient of determination (r2) varied between 0.752 and 0.898, except for dissolved organic carbon which showed a r2 of 0.294. Of the studied parameters, conductivity was the parameter for which discharge explained the most variance. Ratios of the squared sum of residuals were analyzed to verify the need for different regression models for the ice-covered and ice-free seasons. Only streamwater pH required 2 different models. This is of specific importance and interest because of an important salmon population in Catamaran Brook. Other researchers have shown that salmonids can be negatively impacted by pH depressions during snowmelt events.These results show that most dissolved ions which follow simple geochemical reactions can be modelled year-round with only one linear regression. When the geochemistry is more complex, such as in the case of pH, linear regression models can sometimes be used, provided that the annual time-series is divided into seasons with relatively homogenous hydrological and geochemical functions

    Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration

    Get PDF
    We experimentally and numerically investigated the impact of input pump pulse duration on the near-infrared bandwidth of supercontinuum generation in a photonic crystal fiber. We continuously stretched the temporal duration of the input pump laser (centered at 1030 nm) pulses from 500 fs up to 10 ps, while keeping fixed the pump peak power. We observed that the long-wavelength edge of the supercontinuum spectrum is increased by 200 nm as the pump pulse duration grows from 500 fs to 10 ps. We provide a quantitative fit of the experimental results by means of numerical simulations. Moreover, we have explained the observed spectral broadening enhancement induced by pump pulse energy by developing an approximate yet fully analytical model for soliton energy exchange through a series of collisions in the presence of stimulated Raman scattering

    Survey on solar X-ray flares and associated coherent radio emissions

    Full text link
    The radio emission during 201 X-ray selected solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% they are the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.Comment: Solar Physics, in pres

    The UK risk assessment scheme for all non-native species

    Get PDF
    1. A pest risk assessment scheme, adapted from the EPPO (European and Mediterranean Plant Protection Organisation) scheme, was developed to assess the risks posed to UK species, habitats and ecosystems by non-native taxa. 2. The scheme provides a structured framework for evaluating the potential for non-native organisms, whether intentional or unintentional introductions, to enter, establish, spread and cause significant impacts in all or part of the UK. Specialist modules permit the relative importance of entry pathways, the vulnerability of receptors and the consequences of policies to be assessed and appropriate risk management options to be selected. Spreadsheets for summarising the level of risk and uncertainty, invasive attributes and economic impact were created. In addition, new methods for quantifying economic impact and summarising risk and uncertainty were explored. 3. Although designed for the UK, the scheme can readily be applied elsewhere

    Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    Get PDF
    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared

    Combinatorial Level Densities from a Microscopic Relativistic Structure Model

    Full text link
    A new model for calculating nuclear level densities is investigated. The single-nucleon spectra are calculated in a relativistic mean-field model with energy-dependent effective mass, which yields a realistic density of single-particle states at the Fermi energy. These microscopic single-nucleon states are used in a fast combinatorial algorithm for calculating the non-collective excitations of nuclei. The method, when applied to magic and semi-magic nuclei, such as 60^{60}Ni, 114^{114}Sn and 208^{208}Pb, reproduces the cumulative number of experimental states at low excitation energy, as well as the s-wave neutron resonance spacing at the neutron binding energy. Experimental level densities above 10 MeV are reproduced by multiplying the non-collective level densities by a simple vibrational enhancement factor. Problems to be solved in the extension to open-shell nuclei are discussedComment: 22 pages, 5 figures, revised version, to appear in Nucl. Phys.

    Exploring impulsive solar magnetic energy release and particle acceleration with focused hard X-ray imaging spectroscopy

    Get PDF
    How impulsive magnetic energy release leads to solar eruptions and how those eruptions are energized and evolve are vital unsolved problems in Heliophysics. The standard model for solar eruptions summarizes our current understanding of these events. Magnetic energy in the corona is released through drastic restructuring of the magnetic field via reconnection. Electrons and ions are then accelerated by poorly understood processes. Theories include contracting loops, merging magnetic islands, stochastic acceleration, and turbulence at shocks, among others. Although this basic model is well established, the fundamental physics is poorly understood. HXR observations using grazing-incidence focusing optics can now probe all of the key regions of the standard model. These include two above-the-looptop (ALT) sources which bookend the reconnection region and are likely the sites of particle acceleration and direct heating. The science achievable by a direct HXR imaging instrument can be summarized by the following science questions and objectives which are some of the most outstanding issues in solar physics (1) How are particles accelerated at the Sun? (1a) Where are electrons accelerated and on what time scales? (1b) What fraction of electrons is accelerated out of the ambient medium? (2) How does magnetic energy release on the Sun lead to flares and eruptions? A Focusing Optics X-ray Solar Imager (FOXSI) instrument, which can be built now using proven technology and at modest cost, would enable revolutionary advancements in our understanding of impulsive magnetic energy release and particle acceleration, a process which is known to occur at the Sun but also throughout the Universe

    Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration

    Get PDF
    International audienceWe experimentally and numerically investigated the impact of input pump pulse duration on the near-infrared bandwidth of supercontinuum generation in a photonic crystal fiber. We continuously stretched the temporal duration of the input pump laser (centered at 1030 nm) pulses from 500 fs up to 10 ps, while keeping fixed the pump peak power. We observed that the long-wavelength edge of the supercontinuum spectrum is increased by 200 nm as the pump pulse duration grows from 500 fs to 10 ps. We provide a quantitative fit of the experimental results by means of numerical simulations. Moreover, we have explained the observed spectral broadening enhancement induced by pump pulse energy by developing an approximate yet fully analytical model for soliton energy exchange through a series of collisions in the presence of stimulated Raman scattering
    • …
    corecore