2,426 research outputs found
Scheduling MapReduce Jobs under Multi-Round Precedences
We consider non-preemptive scheduling of MapReduce jobs with multiple tasks
in the practical scenario where each job requires several map-reduce rounds. We
seek to minimize the average weighted completion time and consider scheduling
on identical and unrelated parallel processors. For identical processors, we
present LP-based O(1)-approximation algorithms. For unrelated processors, the
approximation ratio naturally depends on the maximum number of rounds of any
job. Since the number of rounds per job in typical MapReduce algorithms is a
small constant, our scheduling algorithms achieve a small approximation ratio
in practice. For the single-round case, we substantially improve on previously
best known approximation guarantees for both identical and unrelated
processors. Moreover, we conduct an experimental analysis and compare the
performance of our algorithms against a fast heuristic and a lower bound on the
optimal solution, thus demonstrating their promising practical performance
Analisa Pengaruh Laju Aliran Partikel Padat Terhadap Sudu-sudu Turbin Reaksi Pada Sistem Pembangkit Listrik Tenaga Uap Menggunakan Cfd
A good quality of steam is essentially needed on power plant system. The main function of this steam is to rotate steam turbine and to couple generator for produce electric. The use of the steam bean is very risky because of the relatively high velocity fluid that comes out of the previous step due to the narrowing of the flow. High velocity may cause huge turbulence which affects the rate of erosion in steam turbine blade. The purpose of this study is to determine the effect of effect of mass flow rate of solid particle of the fluid toward the erosion rate in the blade using CFD. Variations of the mass flow rate of solid particle are 1 kg/s, 1,2 kg/s, 1,4 kg/s, 1,6 kg/s, 1,8 kg/s, and 2 kg/s. Simulation results shows that the increased mass flow rate of solid particle affects to the increasing the erosion rate
A Comparison of the Origin of Idioms in Mandarin and Indonesian
In language, idioms can function as stand-alone semantic units because they contain whole concepts. These concepts, formed from human thought, can be explored to discover cultural elements which served as the basis for idiom creation. If the origins of an idiom are known or recognized, that idiom\u27s meaning can be understood more easily. Idioms are frequently used by language communities in their day-to-day lives. However, the origins of idioms in the Indonesian language has almost never been discussed or researched. This article compares the origins of idioms in Mandarin and in Indonesian. It finds that the origins of idioms in Mandarin and in Indonesian are diverse, but in general fit one of two main types: they may be adapted from foreign languages (most importantly in idioms related to religion), or be created within the society and reproduced from generation to generation. Idioms can be traced to either the written tradition or the oral tradition. Idioms in Mandarin generally originate from the written tradition, whereas idioms in Indonesian tend to originate from orality. This study uses the theory of meaning formation first proposed by Ogden and Richards (1911). The comparative method of data analysis is used here, as the origins of idioms in Mandarin and Indonesian are compared
Recommended from our members
New Thermal Taste Actuation Technology for Future Multisensory Virtual Reality and Internet
Today’s virtual reality (VR) applications are mainly based on audio, visual, and haptic interactions between human and virtual world. Integrating the sense of taste into VR is difficult since we are dependent on chemical-based taste delivery systems. Therefore, developing a proper non-chemical digital taste actuation technology can unlock taste experiences in VR applications such as gaming, multisensory entertainment, remote dining, and online shopping. This paper presents the ‘Thermal Taste Machine’, a new digital taste actuation technology that can effectively produce and modify thermal taste sensations on the tongue. This device changes the temperature of the surface of the tongue within a short period of time (from 25 ◦ C to 40 ◦ C while heating and from 25 ◦ C to 10 ◦ C while cooling). We tested this device on human subjects and described the experience of thermal taste using 20 known (taste and non-taste) sensations. Our results suggested that rapidly heating the tongue produce sweetness, fatty/oiliness, electric taste, warmness, and reduced the sensibility for metallic taste. Similarly, participants reported that the cooling the tongue produced mint taste, pleasantness, and coldness. By conducting an another user study on the perceived sweetness of sucrose solutions after the thermal stimulation, we found that heating the tongue significantly enhanced the intensity of sweetness for both thermal tasters and non-thermal tasters. Also, we found that faster temperature rise on the tongue produce more intense sweet sensations for thermal tasters. We believe that this technology will be useful in two ways: First, it can produce taste sensations without using chemicals for the individuals who are sensitive to thermal taste. Second, the temperature rise of the device can be used as a way to enhance the intensity of sweetness. We believe that this technology can be used to digitally produce and enhance taste sensations in future virtual reality applications. The key novelties of this paper are as follows: 1. Development of a thermal taste actuation technology for stimulating the human taste receptors, 2. Characterization of the thermal taste produced by the device based on a set of taste related sensations and non-taste related sensations, 3. Research on enhancing the intensity for sucrose using thermal stimulation, 4. Research on how different speeds of heating affect the intensity of sweetness produced by thermal stimulation
Tingkat Serangan Hama pada Tanaman Jabon (Anthocephalus Cadamba Miq.) di Desa Negara Ratu II Kecamatan Natar Kabupaten Lampung Selatan
Jabon (Anthocephalus cadamba Miq.) is one of the selected trees as plantation forest in Indonesia. The constrain of jabon plantation is various species of insects which become the pests. Therefore, this research was aimed to discover the damage level of jabon plantation the consequence of the pest attack on jabon forest in Negararatu II village, Natar district of South Lampung. This study was conducted from July to September 2015. The sampling method is systematically multiple plot. The plot size is 20 m x 20 m and distance of each plots is 10 m, hence the amount of the plots are 18. The result showed there were some insects species wich become the pest of jabon such as bagworm (Mahasena corbetti), grasshopper (Locusta migratoria), leafhopper (Bothrogonia sp.), and stem borer (Zeuzera sp.) that inflict damage level about 30,4% – 62,4%
Stress-related anhedonia is associated with ventral striatum reactivity to reward and transdiagnostic psychiatric symptomatology
BACKGROUND: Early life stress (ELS) is consistently associated with increased risk for subsequent psychopathology. Individual differences in neural response to reward may confer vulnerability to stress-related psychopathology. Using data from the ongoing Duke Neurogenetics Study, the present study examined whether reward-related ventral striatum (VS) reactivity moderates the relationship between retrospectively reported ELS and anhedonic symptomatology. We further assessed whether individual differences in reward-related VS reactivity were associated with other depressive symptoms and problematic alcohol use via stress-related anhedonic symptoms and substance use-associated coping. METHOD: Blood oxygen level-dependent functional magnetic resonance imaging (fMRI) was collected while participants (n = 906) completed a card-guessing task, which robustly elicits VS reactivity. ELS, anhedonic symptoms, other depressive symptoms, coping behavior, and alcohol use behavior were assessed with self-report questionnaires. Linear regressions were run to examine whether VS reactivity moderated the relationship between ELS and anhedonic symptoms. Structural equation models examined whether this moderation was indirectly associated with other depression symptoms and problematic alcohol use through its association with anhedonia. RESULTS: Analyses of data from 820 participants passing quality control procedures revealed that the VS × ELS interaction was associated with anhedonic symptoms (p = 0.011). Moreover, structural equation models indirectly linked this interaction to non-anhedonic depression symptoms and problematic alcohol use through anhedonic symptoms and substance-related coping. CONCLUSIONS: These findings suggest that reduced VS reactivity to reward is associated with increased risk for anhedonia in individuals exposed to ELS. Such stress-related anhedonia is further associated with other depressive symptoms and problematic alcohol use through substance-related coping
Comparative study of selected indoor concentration from selective laser sintering process using virgin and recycled polyamide nylon (pa12)
Additive manufacturing (AM) stands out as one of the promising technologies that
have huge potential towards manufacturing industry. The study on additive manufacturing
impact on the environment and occupational exposure are attracting growing attention recently.
However, most of the researcher focus on desktop and fused deposition modelling type and less
attention given to the industrial type of AM. Usually, during the selective laser sintering process,
recycle powder will be used again to reduce cost and waste. This article compares the PM 2.5,
carbon dioxide (CO2) and total volatile organic compound (TVOC) concentration between virgin
and recycles powder using polyamide-nylon (PA12) towards indoor concentration. Four phases
of sampling involve during air sampling accordingly to the Industry Code of Practice on Indoor
Air Quality 2010 by DOSH Malaysia. It was found that PM 2.5 and CO2
concentration are mainly
generated during the pre-printing process. The recycle powder tended to appear higher compared
to virgin powder in terms of PM 2.5, and CO2. The peak value of PM 2.5 is 1452 μg/m3 and CO2
is 1218 ppm are obtained during the pre-printing process during 8 hours of sampling. TVOC
concentration from recycling powder is slightly higher during the post- printing phase where
confirm the influence of the powder cake and PA12 temperature from the printing process. In
summary, this work proves that elective laser sintering (SLS) machine operators are exposed to
a significant amount of exposure during the SLS printing process. Mitigation strategies and
personal protective equipment are suggested to reduce occupational exposure
Serial optical coherence microscopy for label-free volumetric histopathology
The observation of histopathology using optical microscope is an essential procedure for examination of tissue biopsies or surgically excised specimens in biological and clinical laboratories. However, slide-based microscopic pathology is not suitable for visualizing the large-scale tissue and native 3D organ structure due to its sampling limitation and shallow imaging depth. Here, we demonstrate serial optical coherence microscopy (SOCM) technique that offers label-free, high-throughput, and large-volume imaging of ex vivo mouse organs. A 3D histopathology of whole mouse brain and kidney including blood vessel structure is reconstructed by deep tissue optical imaging in serial sectioning techniques. Our results demonstrate that SOCM has unique advantages as it can visualize both native 3D structures and quantitative regional volume without introduction of any contrast agents
A systematic numerical study of the tidal instability in a rotating triaxial ellipsoid
The full non-linear evolution of the tidal instability is studied numerically
in an ellipsoidal fluid domain relevant for planetary cores applications. Our
numerical model, based on a finite element method, is first validated by
reproducing some known analytical results. This model is then used to address
open questions that were up to now inaccessible using theoretical and
experimental approaches. Growth rates and mode selection of the instability are
systematically studied as a function of the aspect ratio of the ellipsoid and
as a function of the inclination of the rotation axis compared to the
deformation plane. We also quantify the saturation amplitude of the flow driven
by the instability and calculate the viscous dissipation that it causes. This
tidal dissipation can be of major importance for some geophysical situations
and we thus derive general scaling laws which are applied to typical planetary
cores
GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP
Full detector simulation was among the largest CPU consumer in all CERN
experiment software stacks for the first two runs of the Large Hadron Collider
(LHC). In the early 2010's, the projections were that simulation demands would
scale linearly with luminosity increase, compensated only partially by an
increase of computing resources. The extension of fast simulation approaches to
more use cases, covering a larger fraction of the simulation budget, is only
part of the solution due to intrinsic precision limitations. The remainder
corresponds to speeding-up the simulation software by several factors, which is
out of reach using simple optimizations on the current code base. In this
context, the GeantV R&D project was launched, aiming to redesign the legacy
particle transport codes in order to make them benefit from fine-grained
parallelism features such as vectorization, but also from increased code and
data locality. This paper presents extensively the results and achievements of
this R&D, as well as the conclusions and lessons learnt from the beta
prototype.Comment: 34 pages, 26 figures, 24 table
- …
