184 research outputs found

    Remaining Challenges in Tanzania's Efforts to Eliminate Iodine Deficiency.

    Get PDF
    To determine iodine levels in salt and iodine deficiency prevalence in school-aged children in 16 districts in Tanzania with previous severe iodine deficiency. A cross-sectional study in schoolchildren. Systematic probability sampling was used to select schools and subjects for goitre assessment and urinary iodine determination. Sixteen districts randomly selected from the 27 categorised as severely iodine-deficient in Tanzania. The study population was primary-school children aged 6-18 years who were examined for goitre prevalence and urinary iodine concentration (UIC). Salt samples from schoolchildren's homes and from shops were tested for iodine content. The study revealed that 83.3% of households (n=21,160) in the surveyed districts used iodised salt. Also, 94% of sampled shops (n=397) sold iodised salt, with a median iodine level of 37.0 ppm (range 4.2-240 ppm). Median UIC in 2089 schoolchildren was 235.0 microg l(-1) and 9.3% had UIC values below 50 microg l(-1). The overall unweighted mean visible and total goitre prevalence was 6.7% and 24.3%, respectively (n=16,222). The age group 6-12 years had the lowest goitre prevalence (3.6% visible and 18.0% total goitre, n=7147). The total goitre prevalence had decreased significantly in all districts from an unweighted mean of 65.4% in the 1980s to 24.3% in 1999 (P<0.05). We believe this difference was also biologically significant. ConclusionThese findings indicate that iodine deficiency is largely eliminated in the 16 districts categorised as severely iodine-deficient in Tanzania, and that the iodine content of salt purchased from shops is highly variable

    A whole-cell biosensor for the detection of gold

    Get PDF
    Geochemical exploration for gold (Au) is becoming increasingly important to the mining industry. Current processes for Au analyses require sampling materials to be taken from often remote localities. Samples are then transported to a laboratory equipped with suitable analytical facilities, such as Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) or Instrumental Neutron Activation Analysis (INAA). Determining the concentration of Au in samples may take several weeks, leading to long delays in exploration campaigns. Hence, a method for the on-site analysis of Au, such as a biosensor, will greatly benefit the exploration industry. The golTSB genes from Salmonella enterica serovar typhimurium are selectively induced by Au(I/III)-complexes. In the present study, the golTSB operon with a reporter gene, lacZ, was introduced into Escherichia coli. The induction of golTSB::lacZ with Au(I/III)-complexes was tested using a colorimetric β-galactosidase and an electrochemical assay. Measurements of the β-galactosidase activity for concentrations of both Au(I)- and Au(III)-complexes ranging from 0.1 to 5 µM (equivalent to 20 to 1000 ng g⁻¹ or parts-per-billion (ppb)) were accurately quantified. When testing the ability of the biosensor to detect Au(I/III)-complexes(aq) in the presence of other metal ions (Ag(I), Cu(II), Fe(III), Ni(II), Co(II), Zn, As(III), Pb(II), Sb(III) or Bi(III)), cross-reactivity was observed, i.e. the amount of Au measured was either under- or over-estimated. To assess if the biosensor would work with natural samples, soils with different physiochemical properties were spiked with Au-complexes. Subsequently, a selective extraction using 1 M thiosulfate was applied to extract the Au. The results showed that Au could be measured in these extracts with the same accuracy as ICP-MS (P<0.05). This demonstrates that by combining selective extraction with the biosensor system the concentration of Au can be accurately measured, down to a quantification limit of 20 ppb (0.1 µM) and a detection limit of 2 ppb (0.01 µM).Carla M. Zammit, Davide Quaranta, Shane Gibson, Anita J. Zaitouna, Christine Ta, Joël Brugger, Rebecca Y. Lai, Gregor Grass, Frank Reit

    Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity.

    Get PDF
    The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr) operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions

    Phenotypic and genotypic characterization of Neisseria gonorrhoeae isolates among individuals at high risk for sexually transmitted diseases in Zurich, Switzerland

    Get PDF
    Background: While ceftriaxone resistance remains scarce in Switzerland, global Neisseria gonorrhoeae (NG) antimicrobial resistance poses an urgent threat. This study describes clinical characteristics in MSM (men who have sex with men) diagnosed with NG infection and analyses NG resistance by phenotypic and genotypic means. Methods: Data of MSM enrolled in three clinical cohorts with a positive polymerase chain reaction test (PCR) for NG were analysed between January 2019 and December 2021 and linked with antibiotic susceptibility testing. Bacterial isolates were subjected to whole genome sequencing (WGS). Results: Of 142 participants, 141 (99%) were MSM and 118 (84%) living with HIV. Participants were treated with ceftriaxone ( N = 79), azithromycin ( N = 2), or a combination of both ( N = 61). No clinical or microbiological failures were observed. From 182 positive PCR samples taken, 23 were available for detailed analysis. Based on minimal inhibitory concentrations (MICs), all isolates were susceptible to ceftriaxone, gentamicin, cefixime, cefpodoxime, ertapenem, zoliflodacin, and spectinomycin. Resistance to azithromycin, tetracyclines and ciprofloxacin was observed in 10 (43%), 23 (100%) and 11 (48%) of the cases, respectively. Analysis of WGS data revealed combinations of resistance determinants that matched with the corresponding phenotypic resistance pattern of each isolate. Conclusion: Among the MSM diagnosed with NG mainly acquired in Switzerland, ceftriaxone MICs were low for a subset of bacterial isolates studied and no treatment failures were observed. For azithromycin, high occurrences of in vitro resistance were found. Gentamicin, cefixime, cefpodoxime, ertapenem, spectinomycin, and zoliflodacin displayed excellent in vitro activity against the 23 isolates underscoring their potential as alternative agents to ceftriaxone

    Replication and active partition of integrative and conjugative elements (ICEs) of the SXT/R391 family : the line between ICEs and conjugative plasmids is getting thinner

    Get PDF
    Integrative and Conjugative Elements (ICEs) of the SXT/R391 family disseminate multidrug resistance among pathogenic Gammaproteobacteria such as Vibrio cholerae. SXT/R391 ICEs are mobile genetic elements that reside in the chromosome of their host and eventually self-transfer to other bacteria by conjugation. Conjugative transfer of SXT/R391 ICEs involves a transient extrachromosomal circular plasmid-like form that is thought to be the substrate for single-stranded DNA translocation to the recipient cell through the mating pore. This plasmid-like form is thought to be non-replicative and is consequently expected to be highly unstable. We report here that the ICE R391 of Providencia rettgeri is impervious to loss upon cell division. We have investigated the genetic determinants contributing to R391 stability. First, we found that a hipAB-like toxin/antitoxin system improves R391 stability as its deletion resulted in a tenfold increase of R391 loss. Because hipAB is not a conserved feature of SXT/R391 ICEs, we sought for alternative and conserved stabilization mechanisms. We found that conjugation itself does not stabilize R391 as deletion of traG, which abolishes conjugative transfer, did not influence the frequency of loss. However, deletion of either the relaxase-encoding gene traI or the origin of transfer (oriT) led to a dramatic increase of R391 loss correlated with a copy number decrease of its plasmid-like form. This observation suggests that replication initiated at oriT by TraI is essential not only for conjugative transfer but also for stabilization of SXT/R391 ICEs. Finally, we uncovered srpMRC, a conserved locus coding for two proteins distantly related to the type II (actin-type ATPase) parMRC partitioning system of plasmid R1. R391 and plasmid stabilization assays demonstrate that srpMRC is active and contributes to reducing R391 loss. While partitioning systems usually stabilizes low-copy plasmids, srpMRC is the first to be reported that stabilizes a family of ICEs

    Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases

    Get PDF
    Age-associated neurodegenerative disorders such as Alzheimer’s disease are a major public health challenge, due to the demographic increase in the proportion of older individuals in society. However, the relatively few currently approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotective mechanisms that decline with ageing. This requires model systems that can recapitulate key features of human neurodegenerative diseases that are also amenable to compound screening approaches. Mammalian models are very powerful, but are prohibitively expensive for high-throughput drug screens. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for neuroprotective compound screening. Here we describe how C. elegans has been used to model various human ageing-associated neurodegenerative diseases and provide an extensive list of compounds that have therapeutic activity in these worm models and so may have translational potential

    Use of day and night urinary iodine excretion to estimate the prevalence of inadequate iodine intakes via the estimated average requirement cut-point method.

    Get PDF
    The objectives were to determine urinary iodine concentration (UIC) in day and night samples collected over a 24-hour period and evaluate the usual dietary iodine intake distribution from this collection. We propose a method by which the prevalence of inadequacy can be calculated from a single 24-hour collection, reducing the burden on participants and the study costs. The samples from 1128 participants were collected between 2009 and 2013 within the framework of the Swiss Kidney Project on Genes observational cohort study; 1024 samples were suitable for statistical evaluation of iodine analysis. Participants were over 18, resident in Switzerland and of European ancestry. Over 24 hours, urine was collected as night-time (bedtime until and including first morning urine) and day-time (the remainder) samples. Associations with variables, in particular to estimated glomerular filtration rate (eGFR), were investigated using mixed models. The 24-hour median UICs were 73 and 96 &amp;micro;g/l for women (n = 542) and men (n = 482), respectively; 24-hour median intakes (derived from the corresponding excretion) were 127 and 156 &amp;micro;g/d, respectively. Day and night excretions were normalised to 24-hour excretion values and the usual intake distribution calculated by the US National Cancer Institute method. The Estimated Average Requirement cut-point method was used to calculate the prevalence of inadequacy, estimated at 14% for women and 4% for men; above the target of 2-3%. We conclude that segregating 24-hour urine into day and night collections is sufficient to determine the prevalence of iodine inadequacy in the population and reduces the burden on participants by sparing a second 24-hour collection. No association between iodine intake and eGFR was found

    Nacubactam enhances meropenem activity against carbapenem-resistant klebsiella pneumoniae producing KPC

    Get PDF
    Carbapenem-resistant Enterobacteriaceae (CRE) are resistant to most antibiotics, making CRE infections extremely difficult to treat with available agents. Klebsiella pneumoniae carbapenemases (KPC-2 and KPC-3) are predominant carbapenemases in CRE in the United States. Nacubactam is a bridged diazabicyclooctane (DBO) -lactamase inhibitor that inactivates class A and C -lactamases and exhibits intrinsic antibiotic and -lactam “enhancer” activity against Enterobacteriaceae. In this study, we examined a collection of meropenem-resistant K. pneumoniae isolates carrying blaKPC-2 or blaKPC-3; meropenem-nacubactam restored susceptibility. Upon testing isogenic Escherichia coli strains producing KPC-2 variants with single-residue substitutions at important Ambler class A positions (K73, S130, R164, E166, N170, D179, K234, E276, etc.), the K234R variant increased the meropenem-nacubactam MIC compared to that for the strain producing KPC-2, without increasing the meropenem MIC. Correspondingly, nacubactam inhibited KPC-2 (apparent Ki [Kiapp] 31 3 M) more efficiently than the K234R variant (Kiapp 270 27 M) and displayed a faster acylation rate (k2/K), which was 5,815 582 M1 s1 for KPC-2 versus 247 25 M1 s1 for the K234R variant. Unlike avibactam, timed mass spectrometry revealed an intact sulfate on nacubactam and a novel peak (337 Da) with the K234R variant. Molecular modeling of the K234R variant showed significant catalytic residue (i.e., S70, K73, and S130) rearrangements that likely interfere with nacubactam binding and acylation. Nacubactam’s aminoethoxy tail formed unproductive interactions with the K234R variant’s active site. Molecular modeling and docking observations were consistent with the results of biochemical analyses. Overall, the meropenem-nacubactam combination is effective against carbapenem-resistant K. pneumoniae. Moreover, our data suggest that -lactamase inhibition by nacubactam proceeds through an alternative mechanism compared to that for avibactam
    corecore