114 research outputs found

    Aromatic emission from the ionised mane of the Horsehead nebula

    Get PDF
    We study the evolution of the Aromatic Infrared Bands (AIBs) emitters across the illuminated edge of the Horsehead nebula and especially their survival and properties in the HII region. We present spectral mapping observations taken with the Infrared Spectrograph (IRS) at wavelengths 5.2-38 microns. A strong AIB at 11.3 microns is detected in the HII region, relative to the other AIBs at 6.2, 7.7 and 8.6 microns. The intensity of this band appears to be correlated with the intensity of the [NeII] at 12.8 microns and of Halpha, which shows that the emitters of the 11.3 microns band are located in the ionised gas. The survival of PAHs in the HII region could be due to the moderate intensity of the radiation field (G0 about 100) and the lack of photons with energy above about 25eV. The enhancement of the intensity of the 11.3 microns band in the HII region, relative to the other AIBs can be explained by the presence of neutral PAHs. Our observations highlight a transition region between ionised and neutral PAHs observed with ideal conditions in our Galaxy. A scenario where PAHs can survive in HII regions and be significantly neutral could explain the detection of a prominent 11.3 microns band in other Spitzer observations.Comment: 9 pages, 9 figures, accepted for publication in A&

    Density structure of the Horsehead nebula photo-dissociation region

    Full text link
    We present high angular resolution images of the H2_2 1-0 S(1) line emission obtained with the Son of ISAAC (SOFI) at the New Technology Telescope (NTT) of the Horsehead nebula. These observations are analysed in combination with Hα\alpha line emission, aromatic dust, CO and dust continuum emissions. The Horsehead nebula illuminated by the O9.5V star σ\sigma Ori (χ\chi \sim 60) presents a typical photodissociation region (PDR) viewed nearly edge-on and offers an ideal opportunity to study the gas density structure of a PDR. The H2_2 fluorescent emission observations reveal extremely sharp and bright filaments associated with the illuminated edge of the nebula which spatially coincides with the aromatic dust emission. Analysis of the H2_2 fluorescent emission, sensitive to both the far-UV radiation field and the gas density, in conjunction with the aromatic dust and Hα\alpha line emission, brings new constraints on the illumination conditions and the gas density in the outer PDR region. Furthermore, combination of this data with millimeter observations of CO and dust continuum emission allows us to trace the penetration of the far-UV radiation field into the cloud and probe the gas density structure throughout the PDR. From comparison with PDR model calculations, we find that i) the gas density follows a steep gradient at the cloud edge, with a scale length of 0.02 pc (or 10'') and nH104n_H\sim 10^4 and 10510^5 cm3^{-3} in the H2_2 emitting and inner cold molecular layers respectively, and ii) this density gradient model is essentially a constant pressure model, with PP\sim4 10610^6 K cm3^{-3}. The constraints derived here on the gas density profile are important for the study of physical and chemical processes in PDRs and provide new insight into the evolution of interstellar clouds.Comment: To be published in A&

    A Spitzer Infrared Spectrograph Survey of Warm Molecular Hydrogen in Ultra-luminous Infrared Galaxies

    Get PDF
    We have conducted a survey of Ultra-luminous Infrared Galaxies (ULIRGs) with the Infrared Spectrograph on the Spitzer Space Telescope, obtaining spectra from 5.0-38.5um for 77 sources with 0.02<z <0.93. Observations of the pure rotational H2 lines S(3) 9.67um, S(2) 12.28um, and S(1) 17.04um are used to derive the temperature and mass of the warm molecular gas. We detect H2 in 77% of the sample, and all ULIRGs with F(60um)>2Jy. The average warm molecular gas mass is ~2x10^8solar-masses. High extinction, inferred from the 9.7um silicate absorption depth, is not observed along the line of site to the molecular gas. The derived H2 mass does not depend on F(25um)/F(60um), which has been used to infer either starburst or AGN dominance. Similarly, the molecular mass does not scale with the 25 or 60um luminosities. In general, the H2 emission is consistent with an origin in photo-dissociation regions associated with star formation. We detect the S(0) 28.22um emission line in a few ULIRGs. Including this line in the model fits tends to lower the temperature by ~50-100K, resulting in a significant increase in the gas mass. The presence of a cooler component cannot be ruled out in the remainder of our sample, for which we do not detect the S(0) line. The measured S(7) 5.51um line fluxes in six ULIRGs implies ~3x10^6 solar-masses of hot (~1400K) H2. The warm gas mass is typically less than 1% of the cold gas mass derived from CO observations.Comment: Accepted ApJ 01 September 2006, v648n1 issue. 14 pages 12 figures IRAS 06361-6217 the f25/f60 ratio is 0.10 not 1.0

    The structure of the protoplanetary disk surrounding three young intermediate mass stars. II. Spatially resolved dust and gas distribution

    Get PDF
    [Abridged] We present the first direct comparison of the distribution of the gas, as traced by the [OI] 6300 AA emission, and the dust, as traced by the 10 micron emission, in the protoplanetary disk around three intermediate-mass stars: HD 101412, HD 135344 B and HD 179218. N-band visibilities were obtained with VLTI/MIDI. Simple geometrical models are used to compare the dust emission to high-resolution optical spectra in the 6300 AA [OI] line of the same targets. The disks around HD 101412 and HD 135344 B appear strongly flared in the gas, but self-shadowed in the dust beyond ~ 2 AU. In both systems, the 10 micron emission is rather compact (< 2 AU) while the [OI] brightness profile shows a double peaked structure. The inner peak is strongest and is consistent with the location of the dust, the outer peak is fainter and is located at 5-10 AU. Spatially extended PAH emission is found in both disks. The disk around HD 179218 is flared in the dust. The 10 micron emission emerges from a double ring-like structure with the first ring peaking at ~ 1 AU and the second at ~ 20 AU. No dust emission is detected between ~ 3 -- 15 AU. The oxygen emission seems also to come from a flared structure, however, the bulk of this emission is produced between ~ 1 -- 10 AU. This could indicate a lack of gas in the outer disk or could be due to chemical effects which reduce the abundance of OH -- the parent molecule of the observed [OI] emission -- further away from the star. The three systems, HD 179218, HD 135344 B and HD 101412, may form an evolutionary sequence: the disk initially flared becomes flat under the combined action of gas-dust decoupling, grain growth and dust settling.Comment: Accepted for publication in A&

    The IRAM-30m line survey of the Horsehead PDR: I. CF+ as a tracer of C+ and a measure of the Fluorine abundance

    Full text link
    C+ is a key species in the interstellar medium but its 158 {\mu}m fine structure line cannot be observed from ground-based telescopes. Current models of fluorine chemistry predict that CF+ is the second most important fluorine reservoir, in regions where C+ is abundant. We detected the J = 1-0 and J = 2-1 rotational lines of CF+ with high signal-to-noise ratio towards the PDR and dense core positions in the Horsehead. Using a rotational diagram analysis, we derive a column density of N(CF+) = (1.5 - 2.0) \times 10^12 cm^-2. Because of the simple fluorine chemistry, the CF+ column density is proportional to the fluorine abundance. We thus infer the fluorine gas-phase abundance to be F/H = (0.6 - 1.5) \times 10^-8. Photochemical models indicate that CF+ is found in the layers where C+ is abundant. The emission arises in the UV illuminated skin of the nebula, tracing the outermost cloud layers. Indeed, CF+ and C+ are the only species observed to date in the Horsehead with a double peaked line profile caused by kinematics. We therefore propose that CF+, which is detectable from the ground, can be used as a proxy of the C+ layers.Comment: Accepted to A&A, 4 pages, 4 figures, 2 table

    Physical structure of the photodissociation regions in NGC 7023: Observations of gas and dust emission with <i>Herschel</i>

    Get PDF
    The determination of the physical conditions in molecular clouds is a key step towards our understanding of their formation and evolution of associated star formation. We investigate the density, temperature, and column density of both dust and gas in the photodissociation regions (PDRs) located at the interface between the atomic and cold molecular gas of the NGC 7023 reflection nebula. We study how young stars affect the gas and dust in their environment. Our approach combining both dust and gas delivers strong constraints on the physical conditions of the PDRs. We find dense and warm molecular gas of high column density in the PDRs

    Deuterium fractionation in the Horsehead edge

    Get PDF
    Deuterium fractionation is known to enhance the [DCO+]/[HCO+] abundance ratio over the D/H elemental ratio of about 1e-5 in the cold and dense gas typically found in pre-stellar cores. We report the first detection and mapping of very bright DCO+ J=3-2 and J=2-1 lines (3 and 4 K respectively) towards the Horsehead photodissociation region (PDR) observed with the IRAM-30m telescope. The DCO+ emission peaks close to the illuminated warm edge of the nebula (< 50" or about 0.1 pc away). Detailed nonlocal, non-LTE excitation and radiative transfer analyses have been used to determine the prevailing physical conditions and to estimate the DCO+ and H13CO+ abundances from their line intensities. A large [DCO+]/[HCO+] abundance ratio (>= 0.02) is inferred at the DCO+ emission peak, a condensation shielded from the illuminating far-UV radiation field where the gas must be cold (10-20 K) and dense (>= 2x10^5 cm-3). DCO+ is not detected in the warmer photodissociation front, implying a lower [DCO+]/[HCO+] ratio (< 1e-3). According to our gas phase chemical predictions, such a high deuterium fractionation of HCO+ can only be explained if the gas temperature is below 20 K, in good agreement with DCO+ excitation calculations.Comment: 4 pages, 3 PostScript figures. Accepted for publication in Astronomy & Astrophysics in the letter section. Uses aa LaTeX macro

    Evidence for CO depletion in the inner regions of gas-rich protoplanetary disks

    Get PDF
    We investigate the physical properties and spatial distribution of Carbon Monoxide (CO) gas in the disks around the Herbig Ae/Be stars HD 97048 and HD 100546. Using high-spectral-resolution 4.588-4.715 μ\mum spectra containing fundamental CO emission taken with CRIRES on the VLT, we probe the circumstellar gas and model the kinematics of the emission lines. By using spectro-astrometry on the spatially resolved targets, we constrain the physical size of the emitting regions in the disks. We resolve, spectrally and spatially, the emission of the 13^{13}CO v(1-0) vibrational band and the 12^{12}CO v=10,v=21,v=32v=1-0, v=2-1, v=3-2 and v=43v=4-3 vibrational bands in both targets, as well as the 12^{12}CO v=54v=5-4 band in HD 100546. Modeling of the CO emission with a homogeneous disk in Keplerian motion, yields a best fit with an inner and outer radius of the CO emitting region of 11 and \geq 100 AU for HD 97048. HD 100546 is not fit well with our model, but we derive a lower limit on the inner radius of 8 AU. The fact that gaseous [OI] emission was previously detected in both targets at significantly smaller radii suggests that CO may be effectively destroyed at small radii in the surface layers of these disksComment: v2: Letter format has been changed to Paper format; Change in the focus of the paper towards CO depletion; Major changes in text; Change of title. Submitted to A&A, 14/10/2008. Accepted by A&A, 17/04/200

    H2 formation on interstellar dust grains: the viewpoints of theory, experiments, models and observations

    Get PDF
    Molecular hydrogen is the most abundant molecule in the universe. It is the first one to form and survive photo-dissociation in tenuous environments. Its formation involves catalytic reactions on the surface of interstellar grains. The micro-physics of the formation process has been investigated intensively in the last 20 years, in parallel of new astrophysical observational and modeling progresses. In the perspectives of the probable revolution brought by the future satellite JWST, this article has been written to present what we think we know about the H formation in a variety of interstellar environments.VW’s research is funded by an ERC Starting Grant (3DICE, grant agreement 336474). GV acknowledges financial support from the National Science Foundation’s Astronomy & Astrophysics Division (Grants No. 1311958 and 1615897). LH acknowledges support from ERC Consolidator Grant GRANN (grant agreement no. 648551). GN acknowledges support from the Swedish Research Council. VW, FD and SM acknowledge the CNRS program ”Physique et Chimie du Milieu Interstellaire” (PCMI) co-funded bythe Centre National d’Etudes Spatiales (CNES). SDP acknowledges funding from STFC, UK. V.V acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MagneticYSOS project, grant agreement No 679937)
    corecore