1,255 research outputs found
Fe Ka line emission from the Arches cluster region - evidence for ongoing particle bombardment?
We present the results of eight years of XMM-Newton observations of the
region surrounding the Arches cluster in the Galactic Center. We study the
spatial distribution and temporal behaviour of the Fe-Ka line emission with the
objective of identifying the likely source of the excitation. We investigate
the variability of the 6.4-keV line emission of four clouds through spectral
fitting of the EPIC MOS data with the use of a modelled background, which
avoids many of the systematics inherent in local background subtraction. We
also employ spectral stacking of both EPIC PN and MOS data to search for
evidence of an Fe-K edge feature imprinted on the underlying X-ray continuum.
The lightcurves of the Fe-Ka line from three bright molecular knots close to
the Arches cluster are found to be constant over the 8-year observation window.
West of the cluster, however, we found a bright cloud exhibiting the fastest
Fe-Ka variability yet seen in a molecular cloud in the Galactic Center region.
The time-averaged spectra of the molecular clouds reveal no convincing evidence
of the 7.1-keV edge feature. The EW of the 6.4-keV line emitted by the clouds
near the cluster is found to be ~1.0 keV. The observed Fe-Ka line flux and the
high EW suggest the fluorescence has a photoionization origin, although
excitation by cosmic-ray particles is not specifically excluded. For the three
clouds nearest to the cluster, an identification of the source of
photo-ionizing photons with an earlier outburst of Sgr A* is however at best
tentative. The hardness of the nonthermal component associated with the 6.4-keV
line emission might be best explained in terms of bombardment by cosmic-ray
particles from the Arches cluster itself. The relatively short-timescale
variability seen in the 6.4-keV line emission from the cloud to the West of the
cluster is most likely the result of illumination by a nearby transient X-ray
source.Comment: 13 pages, 6 figures, accepted for publication in Astronomy and
Astrophysic
The two states of Sgr A* in the near-infrared: bright episodic flares on top of low-level continuous variability
In this paper we examine properties of the variable source Sgr A* in the
near-infrared (NIR) using a very extensive Ks-band data set from NACO/VLT
observations taken 2004 to 2009. We investigate the variability of Sgr A* with
two different photometric methods and analyze its flux distribution. We find
Sgr A* is continuously emitting and continuously variable in the near-infrared,
with some variability occurring on timescales as long as weeks. The flux
distribution can be described by a lognormal distribution at low intrinsic
fluxes (<~5 mJy, dereddened with A_{Ks}=2.5). The lognormal distribution has a
median flux of approximately 1.1 mJy, but above 5 mJy the flux distribution is
significantly flatter (high flux events are more common) than expected for the
extrapolation of the lognormal distribution to high fluxes. We make a general
identification of the low level emission above 5 mJy as flaring emission and of
the low level emission as the quiescent state. We also report here the
brightest Ks-band flare ever observed (from August 5th, 2008) which reached an
intrinsic Ks-band flux of 27.5 mJy (m_{Ks}=13.5). This flare was a factor 27
increase over the median flux of Sgr A*, close to double the brightness of the
star S2, and 40% brighter than the next brightest flare ever observed from
Sgr~A*.Comment: 14 pages, 6 figures, accepted for publication in Ap
Flares and variability from Sagittarius A*: five nights of simultaneous multi-wavelength observations
Aims. We report on simultaneous observations and modeling of mid-infrared
(MIR), near-infrared (NIR), and submillimeter (submm) emission of the source
Sgr A* associated with the supermassive black hole at the center of our Galaxy.
Our goal was to monitor the activity of Sgr A* at different wavelengths in
order to constrain the emitting processes and gain insight into the nature of
the close environment of Sgr A*. Methods. We used the MIR instrument VISIR in
the BURST imaging mode, the adaptive optics assisted NIR camera NACO, and the
sub-mm antenna APEX to monitor Sgr A* over several nights in July 2007.
Results. The observations reveal remarkable variability in the NIR and sub-mm
during the five nights of observation. No source was detected in the MIR, but
we derived the lowest upper limit for a flare at 8.59 microns (22.4 mJy with
A_8.59mu = 1.6+/- 0.5). This observational constraint makes us discard the
observed NIR emission as coming from a thermal component emitting at sub-mm
frequencies. Moreover, comparison of the sub-mm and NIR variability shows that
the highest NIR fluxes (flares) are coincident with the lowest sub-mm levels of
our five-night campaign involving three flares. We explain this behavior by a
loss of electrons to the system and/or by a decrease in the magnetic field, as
might conceivably occur in scenarios involving fast outflows and/or magnetic
reconnection.Comment: 10 pages, 7 figures, published in A&
Simultaneous Multi-Wavelength Observations of Sgr A* during 2007 April 1-11
We report the detection of variable emission from Sgr A* in almost all
wavelength bands (i.e. centimeter, millimeter, submillimeter, near-IR and
X-rays) during a multi-wavelength observing campaign. Three new moderate flares
are detected simultaneously in both near-IR and X-ray bands. The ratio of X-ray
to near-IR flux in the flares is consistent with inverse Compton scattering of
near-IR photons by submillimeter emitting relativistic particles which follow
scaling relations obtained from size measurements of Sgr A*. We also find that
the flare statistics in near-IR wavelengths is consistent with the probability
of flare emission being inversely proportional to the flux. At millimeter
wavelengths, the presence of flare emission at 43 GHz (7mm) using VLBA with
milli-arcsecond spatial resolution indicates the first direct evidence that
hourly time scale flares are localized within the inner 3070
Schwarzschild radii of Sgr A*. We also show several cross correlation plots
between near-IR, millimeter and submillimeter light curves that collectively
demonstrate the presence of time delays between the peaks of emission up to
three hours. The evidence for time delays at millimeter and submillimeter
wavelengths are consistent with the source of emission being optically thick
initially followed by a transition to an optically thin regime. In particular,
there is an intriguing correlation between the optically thin near-IR and X-ray
flare and optically thick radio flare at 43 GHz that occurred on 2007 April 4.
This would be the first evidence of a radio flare emission at 43 GHz delayed
with respect to the near-IR and X-ray flare emission.Comment: replaced with revised version 57 pages, 28 figures, ApJ (in press
Locating the VHE source in the Galactic Centre with milli-arcsecond accuracy
Very high-energy gamma-rays (VHE; E>100 GeV) have been detected from the
direction of the Galactic Centre up to energies E>10 TeV. Up to now, the origin
of this emission is unknown due to the limited positional accuracy of the
observing instruments. One of the counterpart candidates is the super-massive
black hole (SMBH) Sgr A*. If the VHE emission is produced within ~10^{15} cm
~1000 r_G (r_G=G M/c^2 is the Schwarzschild radius) of the SMBH, a decrease of
the VHE photon flux in the energy range 100--300 GeV is expected whenever an
early type or giant star approaches the line of sight within ~ milli-arcseconds
(mas). The dimming of the flux is due to absorption by pair-production of the
VHE photons in the soft photon field of the star, an effect we refer to as
pair-production eclipse (PPE). Based upon the currently known orbits of stars
in the inner arcsecond of the Galaxy we find that PPEs lead to a systematic
dimming in the 100--300 GeV band at the level of a few per cent and lasts for
several weeks. Since the PPE affects only a narrow energy band and is well
correlated with the passage of the star, it can be clearly discriminated
against other systematic or even source-intrinsic effects. While the effect is
too small to be observable with the current generation of VHE detectors,
upcoming high count-rate experiments like the Cherenkov telescope array (CTA)
will be sufficiently sensitive. Measuring the temporal signature of the PPE
bears the potential to locate the position and size of the VHE emitting region
within the inner 1000 r_G or in the case of a non-detection exclude the
immediate environment of the SMBH as the site of gamma-ray production
altogether.Comment: 7 pages, published in MNRAS 402, pg. 1342-134
An Inverse Compton Scattering Origin of X-ray Flares from Sgr A*
The X-ray and near-IR emission from Sgr A* is dominated by flaring, while a
quiescent component dominates the emission at radio and sub-mm wavelengths. The
spectral energy distribution of the quiescent emission from Sgr A* peaks at
sub-mm wavelengths and is modeled as synchrotron radiation from a thermal
population of electrons in the accretion flow, with electron temperatures
ranging up to \,MeV. Here we investigate the mechanism by which
X-ray flare emission is produced through the interaction of the quiescent and
flaring components of Sgr A*. The X-ray flare emission has been interpreted as
inverse Compton, self-synchrotron-Compton, or synchrotron emission. We present
results of simultaneous X-ray and near-IR observations and show evidence that
X-ray peak flare emission lags behind near-IR flare emission with a time delay
ranging from a few to tens of minutes. Our Inverse Compton scattering modeling
places constraints on the electron density and temperature distributions of the
accretion flow and on the locations where flares are produced. In the context
of this model, the strong X-ray counterparts to near-IR flares arising from the
inner disk should show no significant time delay, whereas near-IR flares in the
outer disk should show a broadened and delayed X-ray flare.Comment: 22 pages, 6 figures, 2 tables, AJ (in press
Disentangling Confused Stars at the Galactic Center with Long Baseline Infrared Interferometry
We present simulations of Keck Interferometer ASTRA and VLTI GRAVITY
observations of mock star fields in orbit within ~50 milliarcseconds of Sgr A*.
Dual-field phase referencing techniques, as implemented on ASTRA and planned
for GRAVITY, will provide the sensitivity to observe Sgr A* with infrared
interferometers. Our results show an improvement in the confusion noise limit
over current astrometric surveys, opening a window to study stellar sources in
the region. Since the Keck Interferometer has only a single baseline, the
improvement in the confusion limit depends on source position angles. The
GRAVITY instrument will yield a more compact and symmetric PSF, providing an
improvement in confusion noise which will not depend as strongly on position
angle. Our Keck results show the ability to characterize the star field as
containing zero, few, or many bright stellar sources. We are also able to
detect and track a source down to mK~18 through the least confused regions of
our field of view at a precision of ~200 microarcseconds along the baseline
direction. This level of precision improves with source brightness. Our GRAVITY
results show the potential to detect and track multiple sources in the field.
GRAVITY will perform ~10 microarcsecond astrometry on a mK=16.3 source and ~200
microarcsecond astrometry on a mK=18.8 source in six hours of monitoring a
crowded field. Monitoring the orbits of several stars will provide the ability
to distinguish between multiple post-Newtonian orbital effects, including those
due to an extended mass distribution around Sgr A* and to low-order General
Relativistic effects. Early characterizations of the field by ASTRA including
the possibility of a precise source detection, could provide valuable
information for future GRAVITY implementation and observation.Comment: Accepted for publication in Ap
Strong Gravitational Lensing by Sgr A*
In recent years, there has been increasing recognition of the potential of
the galactic center as a probe of general relativity in the strong field. There
is almost certainly a black hole at Sgr A* in the galactic center, and this
would allow us the opportunity to probe dynamics near the exterior of the black
hole. In the last decade, there has been research into extreme gravitational
lensing in the galactic center. Unlike in most applications of gravitational
lensing, where the bending angle is of the order of several arc seconds, very
large bending angles are possible for light that closely approaches a black
hole. Photons may even loop multiple times around a black hole before reaching
the observer. There have been many proposals to use light's close approach to
the black hole as a probe of the black hole metric. Of particular interest is
the property of light lensed by the S stars orbiting in the galactic center.
This paper will review some of the attempts made to study extreme lensing as
well as extend the analysis of lensing by S stars. In particular, we are
interested in the effect of a Reissner-Nordstrom like 1/r^2 term in the metric
and how this would affect the properties of relativistic images.Comment: 13 pages, 9 figures. Submitted as invited review article for the GR19
issue of CQ
- …
