237 research outputs found

    New results on solar neutrino fluxes from 192 days of Borexino data

    Full text link
    We report the direct measurement of the ^7Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV ^7Be neutrinos is 49+-3(stat)+-4(syst) counts/(day * 100ton). The hypothesis of no oscillation for ^7Be solar neutrinos is inconsistent with our measurement at the 4sigma level. Our result is the first direct measurement of the survival probability for solar nu_e in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of ^7Be, pp, and CNO solar nu_e, and the limit on the magnetic moment of neutrinos

    The Borexino detector at the Laboratori Nazionali del Gran Sasso

    Full text link
    Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub MeV solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography).Comment: 37 pages, 43 figures, to be submitted to NI

    New limits on nucleon decays into invisible channels with the BOREXINO Counting Test Facility

    Get PDF
    The results of background measurements with the second version of the BOREXINO Counting Test Facility (CTF-II), installed in the Gran Sasso Underground Laboratory, were used to obtain limits on the instability of nucleons, bounded in nuclei, for decays into invisible channels (invinv): disappearance, decays to neutrinos, etc. The approach consisted of a search for decays of unstable nuclides resulting from NN and NNNN decays of parents 12^{12}C, 13^{13}C and 16^{16}O nuclei in the liquid scintillator and the water shield of the CTF. Due to the extremely low background and the large mass (4.2 ton) of the CTF detector, the most stringent (or competitive) up-to-date experimental bounds have been established: τ(ninv)>1.81025\tau(n \to inv) > 1.8 \cdot 10^{25} y, τ(pinv)>1.11026\tau(p \to inv) > 1.1 \cdot 10^{26} y, τ(nninv)>4.91025\tau(nn \to inv) > 4.9 \cdot 10^{25} y and τ(ppinv)>5.01025\tau(pp \to inv) > 5.0 \cdot 10^{25} y, all at 90% C.L.Comment: 22 pages, 3 figures,submitted to Phys.Lett.

    Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective

    Get PDF
    One major concern in pervasive wireless applications is location privacy, where malicious eavesdroppers, based on static device identifiers, can continuously track users. As a commonly adopted countermeasure to prevent such identifier-based tracking, devices regularly and simultaneously change their identifiers in special areas called mix-zones. Although mix-zones provide spatio-temporal de-correlations between old and new identifiers, pseudonym changes, depending on the position of the mix-zone, can incur a substantial cost on the network due to lost communications and additional resources such as energy. In this paper, we address this trade-off by studying the problem of determining an optimal set of mix-zones such that the degree of mixing in the network is maximized, whereas the overall network-wide mixing cost is minimized. We follow a graph-theoretic approach and model the optimal mixing problem as a novel generalization of the vertex cover problem, called the Mix Cover (MC) problem. We propose three bounded-ratio approximation algorithms for the MC problem and validate them by an empirical evaluation of their performance on real data. The combinatorics-based approach followed here enables us to study the feasibility of determining optimal mix-zones regularly and under dynamic network conditions

    Imaging Chromophores With Undetectable Fluorescence by Stimulated Emission Microscopy

    Get PDF
    Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging. However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. Here we use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, and report a new contrast mechanism for optical microscopy. In a pump-probe experiment, on photoexcitation by a pump pulse, the sample is stimulated down to the ground state by a time-delayed probe pulse, the intensity of which is concurrently increased. We extract the miniscule intensity increase with shot-noise-limited sensitivity by using a lock-in amplifier and intensity modulation of the pump beam at a high megahertz frequency. The signal is generated only at the laser foci owing to the nonlinear dependence on the input intensities, providing intrinsic three-dimensional optical sectioning capability. In contrast, conventional one-beam absorption measurement exhibits low sensitivity, lack of three-dimensional sectioning capability, and complication by linear scattering of heterogeneous samples. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distributions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging.Chemistry and Chemical Biolog

    Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared

    Full text link
    Single-walled carbon nanotubes (SWNTs) with five different C13/C12 isotope compositions and well-separated Raman peaks have been synthesized and conjugated to five targeting ligands in order to impart molecular specificity. Multiplexed Raman imaging of live cells has been carried out by highly specific staining of cells with a five-color mixture of SWNTs. Ex vivo multiplexed Raman imaging of tumor samples uncovers a surprising up-regulation of epidermal growth factor receptor (EGFR) on LS174T colon cancer cells from cell culture to in vivo tumor growth. This is the first time five-color multiplexed molecular imaging has been performed in the near-infrared (NIR) region under a single laser excitation. Near zero interfering background of imaging is achieved due to the sharp Raman peaks unique to nanotubes over the low, smooth autofluorescence background of biological species.Comment: Published in Nano Researc

    Label-free chemically specific imaging in planta with stimulated Raman scattering microscopy.

    Get PDF
    The growing world population puts ever-increasing demands on the agricultural and agrochemical industries to increase agricultural yields. This can only be achieved by investing in fundamental plant and agrochemical research and in the development of improved analytical tools to support research in these areas. There is currently a lack of analytical tools that provide noninvasive structural and chemical analysis of plant tissues at the cellular scale. Imaging techniques such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy provide label-free chemically specific image contrast based on vibrational spectroscopy. Over the past decade, these techniques have been shown to offer clear advantages for a vast range of biomedical research applications. The intrinsic vibrational contrast provides label-free quantitative functional analysis, it does not suffer from photobleaching, and it allows near real-time imaging in 3D with submicrometer spatial resolution. However, due to the susceptibility of current detection schemes to optical absorption and fluorescence from pigments (such as chlorophyll), the plant science and agrochemical research communities have not been able to benefit from these techniques and their application in plant research has remained virtually unexplored. In this paper, we explore the effect of chlorophyll fluorescence and absorption in CARS and SRS microscopy. We show that with the latter it is possible to use phase-sensitive detection to separate the vibrational signal from the (electronic) absorption processes. Finally, we demonstrate the potential of SRS for a range of in planta applications by presenting in situ chemical analysis of plant cell wall components, epicuticular waxes, and the deposition of agrochemical formulations onto the leaf surface

    Science and technology of BOREXINO: A Real time detector for low-energy solar neutrinos: A Real Time Detector for Low Energy Solar Neutrinos

    Get PDF
    BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiment's goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics

    Measurements of extremely low radioactivity levels in BOREXINO

    Full text link
    The techniques researched, developed and applied towards the measurement of radioisotope concentrations at ultra-low levels in the real-time solar neutrino experiment BOREXINO at Gran Sasso are presented and illustrated with specific results of widespread interest. We report the use of low-level germanium gamma spectrometry, low-level miniaturized gas proportional counters and low background scintillation detectors developed in solar neutrino research. Each now sets records in its field. We additionally describe our techniques of radiochemical ultra-pure, few atom manipulations and extractions. Forefront measurements also result from the powerful combination of neutron activation and low-level counting. Finally, with our techniques and commercially available mass spectrometry and atomic absorption spectroscopy, new low-level detection limits for isotopes of interest are obtained.Comment: 27 pages, 5 figures. Submitted to Astroparticle Physics (17 Sep 2001). Spokesperson of the Borexino Collaboration: G. Bellini. Corresponding author: W. Hampe
    corecore