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Abstract. One major concern in pervasive wireless applications is loca-
tion privacy, where malicious eavesdroppers, based on static device iden-
tifiers, can continuously track users. As a commonly adopted counter-
measure to prevent such identifier-based tracking, devices regularly and
simultaneously change their identifiers in special areas called mix-zones.
Although mix-zones provide spatio-temporal de-correlations between old
and new identifiers, pseudonym changes, depending on the position of the
mix-zone, can incur a substantial cost on the network due to lost com-
munications and additional resources such as energy. In this paper, we
address this trade-off by studying the problem of determining an opti-
mal set of mix-zones such that the degree of mixing in the network is
maximized, whereas the overall network-wide mixing cost is minimized.
We follow a graph-theoretic approach and model the optimal mixing
problem as a novel generalization of the vertex cover problem, called the
Mix Cover (MC) problem. We propose three bounded-ratio approxima-
tion algorithms for the MC problem and validate them by an empirical
evaluation of their performance on real data. The combinatorics-based
approach followed here enables us to study the feasibility of determining
optimal mix-zones regularly and under dynamic network conditions.

1 Introduction

Recent advances in wireless and mobile computing technology have resulted in
rapid proliferation and use of this technology for a variety of pervasive comput-
ing and data-sharing applications. Popular instances of this networking technol-
ogy include vehicular and pervasive social networking systems and applications
such as vehicular safety messaging [48,37], pervasive or local-area social net-
working [41,4,10], dating [1,2,33], personal safety [39] and micro-blogging [21].
Communication devices such as mobile phones (in personal networks) or wire-
less on-board computers (in vehicular networks) communicate with each other
directly in a peer-to-peer fashion or with third-party service providers through
an infrastructure such as a base station or road-side unit.

Users in such pervasive systems continuously face privacy risks, especially
in terms of location privacy, from malicious eavesdroppers and curious service
providers. Users’ location information revealed as a result of this threat can
be used by malicious parties to track their movements and preferences [20] or
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to identify users and their availabilities by inferring their home/work locations
[25], which can be later used for accomplishing malicious goals [3]. Third-party
service providers, however, are generally trusted and claim to utilize the collected
personal and location information to further enhance context-aware services but
can inadvertently harm users’ privacy if the collected data is improperly shared
with commercial partners or leaked in an unauthorized fashion.

One widely adopted strategy to overcome the location privacy concerns in
such pervasive systems, which is inspired by Chaum’s seminal work on mix
networks [13,14], is to regularly mix [35] or change [29,12] device identifiers
including application, IP and device MAC addresses. Recently, non-IP networks
such as cellular networks adopt a similar approach; they identify a subscriber’s
device with a Temporary Mobile Subscriber Identity or TMSI that changes every
time the subscriber moves to a new geographical area.

In order to maximize anonymity, mixing or changing of user identifiers should
occur in a spatiotemporal region, called mix-zones [8,9], where a group of nodes
do not transmit any information (or identifiers); on leaving the mix-zone the
communication resumes with a new identifier or pseudonym for each user or
device. Mix-zones serve to mix or provide de-correlation between pseudonyms
and device associations, which makes it difficult for an adversary to continuously
track users by linking the device and its pseudonym. Let us focus on pervasive
and mobile networking scenarios where users or devices generally move on a
fixed (pre-defined) network of roads, for example, vehicular or pedestrian hand-
held networking scenarios. Earlier research has shown that mix-zones in such
networks are most effective (in protecting privacy) when they are defined at
points with higher input and output ports such as road intersections [11].

Although effective in improving the privacy of users, the pseudonym-change
(or mix) operation is not free and induces a cost on the network (and its users),
which is determined by factors such as the significance of the intersection to users
and the network, traffic intensity at the intersection (both entering and leaving)
and intersection context, for example, time-of-day. This cost is primarily due
to the loss in communication due to routing disruptions [43] or silent periods
[29] and the loss of computation resources such as energy due to the pseudonym
change operation itself and its related side-effects.

This results in an interesting trade-off between the number of mix-zones
that can be deployed on the road network for privacy enhancement and the
resulting cost due to such a deployment. An ideal situation from the privacy
perspective, although infeasible from the cost point-of-view, is to deploy a mix-
zone at each and every intersection of the road network under consideration.
Such a deployment of mix-zones is trivial in theory, but difficult to realize and
sustain in practice due to the resulting costs. A more realistic and feasible goal
would be to maximize the coverage (of roads) of the deployed mix-zones, and
hence the privacy provided by them, and to minimize the associated costs due
to such a deployment. Moreover, the goal is not only to determine such an
optimal and cost-efficient placement of mix-zones but also to study if there are
algorithms that can find such a solution efficiently (in computation time and



space). This is because, as pseudonym change costs at intersections are highly
dynamic and depend on factors such as intersection context and traffic intensity
that continuously change over time, there is a need to regularly determine the
optimal and most cost-efficient set of mix-zones. In order to design efficient
algorithms for the above optimization problem, a thorough theoretical analysis
of the problem from a combinatorial perspective is first required.

In this paper, we model the problem of optimal mix-zone placement as a
graph-based optimization problem where roads are represented by graph edges
and intersections by vertices. Vertices are weighted based on the cost (per de-
vice) of mix-zone placement at each vertex and edges are weighted based on
the demand or traffic intensity of the corresponding road in each direction. The
problem of optimal mix-zone placement - we refer to as the Mix Cover prob-
lem (MC) - is then to determine a set of intersections (or vertices) for mix-zone
placement, such that all the roads in the network are associated with at least
one mix-zone and the overall cost of the mix-zone placement is minimized. The
mix cover problem nicely models the mix-zone placement problem in pervasive
networks and is a generalization of the well-known Vertex Cover (VC) problem
[32], and a special case of the Facility Terminal Cover (FTC) problem [47]. To
the best of our knowledge, this generalization, and specifically in the setting
of pervasive networks, has not been addressed in the literature. We show that
the mix cover problem is a combinatorially hard problem and propose three
bounded-ratio approximation algorithms for the same. The first algorithm is
based on a linear programming relaxation of an Integer Program (IP) formula-
tion of the problem, whereas the remaining two algorithms take advantage of
the “divide and conquer” strategy of [47] which was used to solve the FTC prob-
lem. We analytically study the solution quality and running-time guarantees of
the algorithms by deriving their worst-case approximation ratio and running-
time, respectively. Finally, we perform an extensive comparative analysis of the
proposed algorithms by evaluating them on real US road-traffic data.

2 Background and Related Work

In the following section, we provide a short overview of concepts in complexity
theory and combinatorial optimization used throughout the paper and outline
other research efforts on the mix-zone placement problem.

2.1 Preliminaries: Combinatorial Hardness and Approximations

A decision problem S ⊆ {0, 1}∗ is said to have an efficiently verifiable proof sys-
tem if there exists a polynomial p and a polynomial-time verification algorithm
V such that the following two conditions hold:

– Completeness: For every x ∈ S, there exists y of length at most p(|x|) such
that V (x, y) = 1.

– Soundness: For every x /∈ S and every y, it holds that V (x, y) = 0.



The class NP is the class of decision problems that have an efficiently verifi-
able proof system. A polynomial-time computable function f is called a Karp-
reduction of S to S′ (in other words, S is Karp reducible to S′) if, for every x,
it holds that x ∈ S if and only if f(x) ∈ S′. A set S is NP -complete if it is in
NP and every set in NP is Karp-reducible to it. A set S is NP -hard if every
set in NP is Karp-reducible to it, but its membership within NP is not known.
It is not known whether every problem in NP can be efficiently (in polynomial
time) solved. But, if any single problem in the set of NP -hard problems can be
solved efficiently, then every problem in NP can also be solved efficiently. Thus,
NP -hard problems are considered “harder” than NP problems in general, and
are believed to have no polynomial-time exact solutions. Algorithms for such
hard problems, also called optimization problems, that run in polynomial time
and produce a near-exact or sub-optimal solution are called approximation algo-
rithms. Approximation algorithms that can guarantee that the solution output
by them can be no more (if minimization problem) or less (if maximization
problem) than a factor σ times the optimal solution is called a σ-approximation
algorithm for that problem. More details on these topics can be found in [22,24].

2.2 Mix-Zone Placement Problem

The concept of using mix-zones in road networks, as a means to improve the lo-
cation privacy of the mobile devices, has been proposed in [29,11,18]. Freudiger
et al. [19] were the first to study and formulate the problem of optimal mix-zone
placement in road networks. Here, the authors measure the effectiveness of mix-
ing by measuring the probability of error of an adversary in correctly assigning
exiting flows to their corresponding entering flows at a mix-zone. By using lin-
ear programming, they determine an optimal set of mix-zones that maximize the
overall mixing effectiveness. In contrast, our model and solution is more general
where we study the trade-off between maximizing the coverage of mix-zones and
minimizing their deployment cost.

In another related effort, Alpcan and Buchegger [5] use game theory to model
the attack and optimal defense strategies of the adversary and users in vehicular
networks. Humbert et al. [31] also study the problem of optimal mix-zone place-
ment from a game-theoretic perspective. They model the problem of mix-zone
placement as a game between mobile users who want to protect their privacy
and a local adversary who wants to track them by strategically placing eaves-
dropping stations. Here, the authors focus on deriving mix-zone deployment
strategies locally at each intersection, whereas in our work, we study the prob-
lem of achieving a globally optimal deployment strategy. Palanisamy et al. [38]
propose a framework and a suite of algorithms for mix-zone construction, which
considers the inherent characteristics of road networks. Similar to earlier results,
these mix-zone deployment strategies protect against specific adversarial attacks
and only consider local intersection parameters for mix-zone deployment.

We extend the state of the art in optimal mix-zone deployment as follows.
First, we study the problem of optimal mix-zone deployment from a global
(network-wide) perspective. Moreover, our model and assumptions are generic



enough to include other privacy metrics [44,45], in addition to the basic mix-zone
coverage guarantee. Second, the analytical results obtained in this paper shed
light on the feasibility of optimally deploying mix-zones in dynamic real-time
road-network settings autonomously by mobile devices. Finally, the results out-
lined in this paper are also significant from the combinatorics viewpoint, as the
generalization of the VC problem studied here has not been discussed before in
the literature.

3 Problem Statement

3.1 System Model

Consider a wireless and pervasive mobile networking system where users (or ve-
hicles) carry wireless communication devices that can either communicate with
each other in a peer-to-peer fashion or through infrastructure-based base sta-
tion(s). Examples of such networking systems include, but are not limited to,
wireless peer-to-peer mobile-phone based pervasive social networking platforms
such as Nokia Instant Community (NIC) [41] and vehicle-based wireless commu-
nication systems or VANETs [23]. Each mobile device in the network includes
some identifying information or pseudonym in its communication, such as a MAC
address or an application-level identifier, which is used for identifying the device
and for routing communications within the network [40].

In order to prevent trivial tracking by an eavesdropping adversary, wire-
less devices regularly change their identifiers or pseudonyms. Various techniques
for privacy protection, which use multiple pseudonyms or identifiers, have been
studied in the literature [9,35,11,12]. In order to prevent trivial linkability of
old and new pseudonyms, devices must coordinate their pseudonym changes, in
space and time, with other devices, in order to achieve spatial and temporal
de-correlation. Such regions for achieving spatial and temporal de-correlation
of devices and (old and new) pseudonyms are also referred to as mix-zones [9].
In a mix-zone, spatial de-correlation is achieved by mobile device(s) changing
their pseudonyms in a coordinated fashion whereas temporal de-correlation is
achieved by either remaining silent for a short period of time [29], by encrypting
communications after pseudonym change [18], or by means of a mobile proxy
[42]. Mix-zones can be passive or active, depending on the actions taken by the
devices immediately after the pseudonym change operation [31]. We assume that
an off-line Certification Authority (CA), run by an independent trusted third-
party, loads the mobile devices with a set of pseudonyms prior to deployment.

Road intersections are considered to be good spots for mix-zone deployment
(and coordinated pseudonym change operations) as they provide optimal spatio-
temporal de-correlation, as also observed in [19,31]. It is clear that mix-zones
incur a communication overhead [43] and thus must be carefully placed (with
appropriate parameters [30]) in order to reduce the cost induced on the end-users
and to provide high location privacy (or high user-identifier de-correlation). The
cost of deploying a mix-zone at any intersection can be a weighted sum of various
factors, including the extra resource requirements of devices for mixing and the



resulting communication disruption due to mixing at that intersection. We do
not quantify these parameters in this work, but we can use existing results in
the literature for representing these costs [43,31].

We assume that all the intersections, over the area under consideration, are
connected with each other by a network of roads. Each road can be used to
reach either one of the intersection that it connects, i.e., there is a two-way
movement of users (or devices, vehicles, etc.) on the road. The demand for an
intersection on a road is the average number of users using the road to reach
that particular intersection. Thus, each road has two demands, one for each
intersection connected by the road. Accordingly, unidirectional roads have just
one demand, i.e., the one in the direction of the intersection; the other demand
is zero. For simplicity, we assume that any two intersections are connected only
by a single road; multiple roads between any two intersection can be combined
into a single road by simply adding their respective demands.

3.2 Privacy Requirement

Given the system model discussed above, we want to investigate the problem of
determining the most effective and cost-efficient mixing strategy in large perva-
sive networking scenarios. In other words, we address the problem of determining
an optimal selection of intersections for mix-zone deployment such that all the
roads in the network are covered and the overall cost due to mixing is mini-
mized. We say that a road is fully-covered if and only if both the end points
(intersections) of the road have mix-zones deployed on it, i.e., there is mixing at
both intersections of the road. A network is said to be fully-covered (or has a
full cover) if and only if all the roads in the network are fully-covered.

It is easy to see that in the system model discussed above, a full covering of
the network can only be achieved if and only if all the intersections in the network
are selected for mixing or mix-zone deployment. Such a mixing or full covering
strategy is not only trivial but also ideal from the privacy viewpoint. But from a
cost perspective, such a covering may be difficult to achieve in practice due to the
network size or infeasible due to the overall cost of mixing at the intersections.

Let us now define a more general version of the full cover described above,
called mix cover. A network is said to be mix covered if and only if each of the
roads in the network have at least one of its intersections where a mix-zone is
deployed. A fully-covered network is also mix covered and some of the roads
in a mix covered network may be fully-covered, i.e., both the intersections of a
road may have mix-zones deployed. From the privacy perspective, a mix covered
network can guarantee that any user (or device) traversing the road network can
traverse at most two roads (or at most one intersection) without encountering
a mix-zone. From the practical standpoint, a mix cover is a reasonable mixing
strategy for most deployment scenarios and adversarial models. We focus on the
problem of determining a cost-efficient mix cover by modeling it as a graph-based
optimization problem, as discussed next.



3.3 Graph-theoretic Framework and the Mix Cover (MC) Problem

Let us represent the road network described above by an undirected graph G ≡
(V,E,w, d). There exists a vertex v ∈ V corresponding to each intersection in
the road network and |V | = n is the total number of intersections (vertices1) in
the area of the road network under consideration. Each road connecting any two
intersections u and v is represented by an edge e ≡ (u, v) ∈ E, where E is the set
of all edges (or roads) and |E| = m is the total number of roads (edges). There
exists only a single edge (u, v) between any two pair of vertices u and v in G.
Given the undirected graph G, let w : V → R+ be the cost function that assigns
a positive cost to each vertex. The cost at each vertex represents the average
cost (per user) of mix-zone deployment (or mixing) at that intersection; the
higher the cost, the higher the amount of communication and device resources
spent by each user for mixing at that intersection is. We represent by wu the
cost of a vertex u ∈ V . Let d : E → (R+,R+) be the demand function that
assigns a pair of positive demands to each edge where each demand value in the
pair represents the demand for a particular vertex connected by the edge. This
demand pair could signify, in the case of vehicular (or pedestrian) networks, the
average traffic (or pedestrian) intensity on the road in each direction. For any
edge e(u, v) ∈ E, we represent the demand as de = (due , d

v
e), where due , d

v
e is the

demand on edge e for intersections u and v, respectively. The value of due = 0 if
u is not one of the end points of the edge e.

Given the above graph representation of the road network, we are interested
in the problem of efficiently determining the optimal mix cover of the network.
Each vertex chosen in the mix cover should be able to handle the demands
from all the edges it covers. In other words, each intersection should be able to
accommodate even the largest demand made at it; we refer to this ability of each
intersection as the capacity of the mix-zone at that intersection. The capacity
at a vertex is zero if there is no mix-zone at that vertex. The optimality criteria
is based on an assignment of capacities to vertices or intersections such that the
demands of all edges are met and the overall cost minimized. Formally, we can
represent the problem of determining the optimal mix cover, referred by us as the
Mix Cover (MC) problem, in the graph G ≡ (V,E,w, d) as a generalization of the
Vertex Cover (VC) problem. VC is a fundamental problem in graph theory and
a vertex cover of an undirected graph G ≡ (V,E) is a subset of vertices VC ⊆ V
which contains at least one vertex of all the edges in E and the VC problem is
to determine a vertex cover VC of the smallest cardinality. The VC problem is
NP − hard and the decision version of the same is known to be NP − complete
[32]. The Mix Cover (MC) problem can be formally defined as:

Problem 1. Given an undirected graph G ≡ (V,E,w, d), where w is the cost
function associated with the set of vertices and d is the demand function associ-
ated with the set of edges, as discussed above, determine a subset VMC ⊆ V and

1 Readers should note that from this point on we will use “vertex” and “intersections”
(similarly, “road” and “edge”) interchangeably and the intended meaning will be
implicit from the context.



a capacity c(v) for each vertex v ∈ VMC such that for each edge e ≡ (u, v) ∈ E at
least one of the vertices u and v is in VMC and associated with a capacity c(u) ≥
due and c(v) ≥ dve respectively, and the total weighted cost,

∑
x∈VMC

c(x)wx, of
all vertices in VMC is minimized.

Thus, given graph G ≡ (V,E,w, d) of the road network, the MC problem deter-
mines a mix cover of the network such that the overall (network-wide) weighted
cost of the mix cover is minimized. The total intersection cost at each intersection
v is the intersection mixing cost wv times the capacity c(v) at v. The capacity at
any intersection v is at least the maximum demand at that intersection from all
roads covered by it. The overall (network-wide) weighted cost of the mix cover is
the sum of all the total intersection costs at each intersection in the mix cover.
Figure 1 shows one such feasible solution.
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Fig. 1. Mix Cover example on downtown Miami (FL). On the left, the dark circles in-
dicate all intersections where mix-zone placement is possible. The graph representation
is shown in the middle and a feasible mix cover is shown on the right, where the dark
circles are included in the solution and the shaded circles are not.

The MC problem is very similar to another generalization of the VC prob-
lem called the Facility Terminal Cover (FTC) problem [47,28], but there is an
important difference between the two problems. Given a graph G ≡ (V,E,w, d),
where w : V → R+ and d : E → R+ (denoted as wv and de for vertex v and edge
e, respectively), the FTC problem is to find a set VFTC ⊆ V and a capacity c(v)
for each vertex v ∈ VFTC such that for each edge e ≡ (u, v) ∈ E at least one of
the vertices u and v is in VFTC and associated with a capacity c(u) ≥ de, and the
total weighted capacity

∑
x∈VFTC

c(x)wx is minimized. As we can see from the
FTC problem definition, the assumed graph model assigns only a single demand
value to an edge and so the selected capacity for covering any edge depends only
on the demand value for this same edge. This is different from the MC problem
where each edge has two demand values and the selected capacity for covering
any edge depends on the (demand value associated with the) vertex that is used



to cover that same edge. The FTC problem can be considered as a special case of
the MC problem, i.e., the MC problem reduces to the FTC problem when both
the demand values are equal for all the edges in the graph. The formulation and
algorithms of the FTC problem cannot be directly used to solve the much more
general MC problem; although we will use one of the solution strategy [47] of
the FTC problem for solving the MC problem.

There is another generalization of the VC problem called the minimum Gen-
eralized Vertex Cover (GVC) problem [27]. In GVC, contrary to VC, an edge
incurs a cost (or demand, as in our case) depending on the number of its ver-
tices that belong to the solution. Once again, such a generalization of the VC
is different from the one that we are interested in, because in our case the de-
mand incurred by the edge does not depend on the number of its vertices in the
solution rather on which vertex is included in the solution. To the best of our
knowledge, this is the first paper to model and study the problem of optimal
mixing or mix-zone placement in pervasive networks as a unique generalization
of the VC problem, which we believe has not been studied before.

4 Algorithms and Combinatorial Results

Let us first analyze the combinatorial hardness of the MC problem. We state
the following theorem for the hardness of the MC problem.

Theorem 1. The MC problem is NP-hard.

Theorem 1 is straightforward, as we can easily reduce any instance of the
weighted vertex cover problem to an instance of the MC problem in polynomial
time. This can be done by defining a simple demand function for the graph
instance of the weighted vertex cover problem as de ≡ (due = 1, dve = 1),∀e,
where e ≡ (u, v) is an edge of the graph instance. Thus, as the weighted vertex
cover is NP-hard, we can claim that the MC problem is also NP-hard. The
MC problem also seems difficult to approximate and we do not believe it has
a Polynomial-Time Approximation Scheme (PTAS). This is because the VC
problem itself, which is considered to be much simpler than the MC problem, is
not believed to have an approximation ratio within 1.3606 unless P = NP [16].
In the following sections, we outline two approximation strategies for the MC
problem. The first is based on a linear programming formulation of the problem,
whereas the other two algorithms employ a “divide and conquer” strategy by
utilizing the round and group approach for solving the FTC problem [47].

4.1 Linear Programming Algorithm

We first formulate the MC problem as an Integer Program (IP), more specifically
a 0-1 Program. Let zve be a binary decision variable for each edge e and its
corresponding vertex v which indicates whether the vertex v is included in the
mix cover (solution) to cover edge e or not, i.e., zve = 1 if edge e is covered by
vertex v and zve = 0 if not. Let xv be the decision variable indicating the capacity



and wv indicate the cost of each vertex v ∈ V . Then, the IP formulation of the
MC problem can be obtained as follows:

min
∑
v∈V

wvxv

subject to zue + zve ≥ 1,∀e ≡ (u, v) ∈ E
xv ≥ zvedve ,∀v ∈ V, e ∈ E
zve ∈ {0, 1},∀v ∈ V, e ∈ E

Now, solving an Integer Program is a well-known hard problem [32]. For-
tunately, efficient (polynomial time) techniques [6] exist for solving a Linear
Program (LP) relaxation of the Integer program. If the LP relaxation has an
integral solution then that can also be the solution to the above IP. In general,
solving the LP relaxation of the problem can give a fractional feasible solution,
from which a feasible (and possibly non-optimal) solution to the above IP can
be obtained. The LP relaxation of the problem is as shown below:

min
∑
v∈V

wvxv

subject to dvexu + duexv ≥ duedve ,∀e ≡ (u, v) ∈ E
xv ≥ 0,∀v ∈ V

Let (x̄, {z̄e|∀e ∈ E}) be an optimal solution to the above LP formulation,
where ze,i = xi

die
is the entry of the vector z̄e representing the value of the decision

variable corresponding to vertex i (to cover edge e), and xj is the jth entry of x̄
and represents the capacity value at the vertex j. The value of ze,i = 0 if i is not
a vertex in edge e. We can see that any optimal solution (x̄, {z̄e}) produced by
solving the above LP is a feasible fractional solution to the MC problem. It is
also clear that an optimal solution OPT to the MC problem is always a feasible
solution to the above LP formulation. Thus, the above LP relaxation for the
MC problem is correct. Based on this, we can prove the following bound on the
approximation quality for the MC problem.

Theorem 2. There exists a polynomial time 2-approximation for MC.

For conciseness, the proof of this theorem has been moved to the Appendix.
Theorem 2 shows that a constant ratio approximation is possible for the MC
problem. Algorithms for linear programming, such as the simplex algorithms
[15], are efficient in practice with a polynomial (in number of constraints) num-
ber of iterations, excluding the number of arithmetic operations [36]. But, Klee
and Minty [34] showed that the number of iterations performed by some vari-
ants of the simplex can be exponential. Moreover, there is always a possibility,
depending on the demand values, of the method producing an unbounded or an
infinite number of solutions. To overcome these problems, we take advantage of
a deterministic linear-time (in number of edges) approach for FTC proposed by
Xu et al. [47], as discussed next.



4.2 “Divide and Conquer” Algorithms

In their algorithm, Xu et al. divide the input graph instance into multiple sub-
graphs by first rounding the edge demands and then grouping them based on
the rounded edge values. They then apply the Weighted Vertex Cover (WVC)
algorithm on each subgraph to obtain the solution to the FTC problem on the
input graph. They show that their algorithm produces a 8-approximation when
a 2-approximation algorithm [7,26] is used for WVC.

One of the main differences between FTC and MC is that in FTC the in-
put graph instance has all edges with a single demand value, whereas in the
MC problem, each edge has two demands, depending on the vertex chosen to
cover the edge. Moreover, the MC problem is not directly reducible to the FTC
problem unless the two demand values for each edge are equal. Below we outline
two algorithms for solving the MC problem; they utilize the round and group
strategy of [47]. In order to take advantage of their approach to solve the MC
problem, we first need to transform the input graph instance so that all edges
have equal demand values. Based on how this transformation is done, we will
later see that the overall solution quality is accordingly influenced.

Largest Demand First (LDF) Algorithm In our first, and more straight-
forward approach, we transform an input instance of the MC problem from
G ≡ (V,E,w, d) to G′ ≡ (V,E,w, d′) such that, for each edge, both the new de-
mands of the edge are equal and with value equal to the larger of the two original
demand values. The intuition behind such a transformation is that if a vertex
is able to cover the larger demand, then it will definitely be able to cover any
demand smaller or equal to the larger demand. Then, the final demand values
of the edges in the new graph instance G′ are rounded off to the closest power
of 2 of the larger demand value chosen in the previous step. Lemma 1 shows
that any solution of the MC problem on such a transformed version (G′) of the
original graph is also a feasible solution for the MC problem on original graph
(G). After obtaining G′, it is first divided into subgraphs (Gk) based on the
rounded edge demands (2k), with each subgraph containing only edges of the
same demand value. A known minimum WVC algorithm (such as [7,26]) is then
used to obtain the minimum weighted vertex cover for each subgraph Gk. The
mix cover is finally obtained by combining solutions from each of the individual
subgraphs in the previous step. The LDF algorithm is outlined in Algorithm 1.

Lemma 1. Any solution to the MC problem on the transformed graph instance
G′ ≡ (V,E,w, d′) is also a feasible solution to the MC problem on the origi-
nal graph instance G ≡ (V,E,w, d). Moreover, OPT (G′) ≤ 2αOPT (G), where
OPT (.) is the optimal solution and α = max{|due − dve | | ∀e ≡ (u, v) ∈ G}, i.e.,
the maximum difference, over all edges, between the two edge demand values.

We have the following result for the solution quality and running time of LDF.

Theorem 3. The LDF algorithm is a linear time (in terms of the number of
edges and vertices), 4αβ-approximation algorithm for the MC problem, where



Algorithm 1: Largest Demand First (LDF) Algorithm

input : A graph G ≡ (V,E,w, d).
output: A mix cover SMC ≡ (v, c(v)) of G, where v ∈ V and c(v) is the capacity assigned

to v.
for all e ≡ (u, v) ∈ E do

d′e ≡ (d′ue = max{due , d
v
e}, d

′v
e = max{due , d

v
e});

if 2k−1 ≤ d′ue = d′ve ≤ 2k then

d′e ≡ (d′ue = 2k, d′ve = 2k);
end

end

Let G′ ≡ (V,E,w, d′);

Let Gk ≡ (Vk, Ek, w) be a subgraph of G′ induced by edges Ek = {e ∈ E|d′e = 2k};
for all Gk do

if Vk 6= φ then
SGk

= WVC-2Approx(Gk ≡ (Vk, Ek, w));

else
SGk

= φ;

end

end
SMC = φ;
for all SGk

such that SGk
6= φ do

c(v)← max{2k|∀k s.t. v ∈ SGk
};

SMC ← (v, c(v));

end

β > 1 is the approximation ratio of the minimum WVC algorithm used and α is
as defined in Lemma 1.

The proof of Lemma 1 and Theorem 3 can be found in the Appendix. Now, let
us present a second solution strategy based on a transformation that chooses the
smaller of the two demand values.

Smallest Demand First (SDF) Algorithm In the LDF algorithm, we trans-
form the input graph instance into an instance where the smaller edge demand
is replaced by the larger one. This guarantees that each edge has the same (and
a single) demand value and that the mix cover of such a transformed instance
is also a feasible mix cover of the original instance. In practice, it is clear that
such a strategy will produce a highly sub-optimal solution because there may
be vertices in the final solution that may cover edges with much lower actual
demand values. In order to overcome this issue, we propose another strategy for
solving the MC problem, called the Smallest Demand First (SDF) algorithm.

This SDF algorithm, as outlined in Algorithm 2, consists of three phases. In
the first phase, in contrast to the LDF algorithm, we transform the input graph
instance G ≡ (V,E,w, d) of the MC problem into an instance G′′ ≡ (V,E,w, d′′)
where the larger edge demand is now replaced by the smaller one. In this phase,
an additional task during edge demands transformation is to remember the
largest demand (dvmax) to be covered at each vertex. In the second phase, simi-
lar to the LDF algorithm, we use the round and group strategy to obtain a mix
cover for the transformed instance. In the final phase, we assign capacities to
the vertices based on the output of the previous phase and the largest demand



Algorithm 2: Smallest Demand First (SDF) Algorithm

input : Graph G ≡ (V,E,w, d).
output: Mix cover SMC ≡ (v, c(v)) of G, where v ∈ V and c(v) is the capacity assigned to v.
for all v ∈ V do

dvmax = 0;
end
for all e ≡ (u, v) ∈ E do

if due > dumax then
dumax = due ;

end
if dve > dvmax then

dvmax = dve ;
end

d′′e ≡ (d′′ue = min{due , d
v
e}, d

′′v
e = min{due , d

v
e});

if 2k−1 ≤ d′′ue = d′′ve ≤ 2k then

d′′e ≡ (d′′ue = 2k, d′′ve = 2k);
end

end

Let G′′ ≡ (V,E,w, d′′);

Let Gk ≡ (Vk, Ek, w) be a subgraph of G′′ induced by edges Ek = {e ∈ E|d′′e = 2k};
for all Gk do

if Vk 6= φ then
SGk

= WVC-2Approx(Gk ≡ (Vk, Ek, w));

else
SGk

= φ;

end

end
SMC = φ;
for all SGk

such that SGk
6= φ do

c(v)← max{max{2k|∀k s.t. v ∈ SGk
}, dvmax};

SMC ← (v, c(v));
end

dvmax determined in the first phase. Lemma 2 gives the relationship between the
MC problem on the transformed version G′′ and the original graph G.

Lemma 2. OPT (G′′) ≤ 2
αOPT (G), where G′′ ≡ (V,E,w, d′′) is the shortest

demand first transformation of the original graph instance G ≡ (V,E,w, d),
OPT (.) is the optimal solution of the MC problem on the input graph insance
and α = max{|due − dve | | ∀e ≡ (u, v) ∈ G}, i.e., the maximum difference, over
all edges, between the two edge demand values in the original graph instance.

It is easy to see that a feasible solution for the MC problem on G′′ may not nec-
essarily be a feasible solution to the MC problem on the original graph instance
G. Moreover, in the worst case, OPT (G′′) may include only those vertices that
correspond to larger demand values in the original graph. This observation and
an argument similar to Lemma 1 can be used to prove Lemma 2. For conciseness,
we omit the details. We have the following result for the approximation ratio.

Theorem 4. The Smallest Demand First or SDF algorithm is a 4β-approximation
algorithm for the MC problem, where β > 1 is the approximation ratio of the
minimum WVC algorithm. Moreover, the algorithm runs in O(mn) time, where
n is the number of vertices and m is the number of edges in the graph.

The proof for Theorem 4 can be found in the Appendix. It is clear from
Theorem 4 that the SDF algorithm guarantees the same approximation ratio as



the deterministic algorithm of Xu et al. [47] but runs slower. We now evaluate
the practical efficiency of the proposed approaches by executing them on real
vehicular road-network data.

5 Empirical Evaluation

In this section, we evaluate the performance of the proposed algorithms by imple-
menting them in Matlab and executing them on a multi-core desktop computer.
For our experiments, we construct the input graph instance using real road-traffic
data (intersections, roads and bi-directional AADT traffic intensities) from the
official transportation databases for Florida [17] and Virginia [46]. The results
are outlined in Table 1.

Table 1. Performance of the proposed Mix Cover algorithms on real road traffic data.

SMALL SIZE GRAPH MEDIUM SIZE GRAPH FULL SIZE GRAPH
25% of municipalities 65-85% of municipalities Entire State

Florida
Virginia

Constant Uniform Gaussian Constant Uniform Gaussian Constant Uniform Gaussian
A 1 - Florida 1243 1267 1238 2891 2990 2909 3481 3600 3545
A 2 - Florida 1217 1244 1216 2863 2949 2877 3452 3502 3452

A 1 - Virginia 1346 1373 1350 3328 3404 3345 3523 3592 3532
A 2 - Virginia 1376 1386 1364 3376 3426 3374 3550 3607 3551
A 1 - Florida 0.51 0.40 0.48 0.49 0.38 0.46 0.49 0.38 0.46
A 2 - Florida 0.45 0.35 0.42 0.43 0.34 0.40 0.43 0.34 0.40

A 1 - Virginia 0.82 0.79 0.81 0.82 0.79 0.81 0.82 0.79 0.81
A 2 - Virginia 0.79 0.76 0.78 0.79 0.77 0.79 0.80 0.77 0.79
A 1 - Florida 13.08 15.84 16 54.56 58.52 65.48 68.43 71.84 83.73
A 2 - Florida 14.89 18.26 18.37 59.59 62.16 71.1 77.34 77.94 93.36

A 1 - Virginia 12.78 15.08 15.58 43.02 51.22 54.98 42.47 49.13 50.7
A 2 - Virginia 13.45 16.05 16.53 46.68 54.47 57.58 46.17 51 54

7557 / 8310
2408 / 2514 5726 / 6728 5881 / 6952

Duration of 
the MC 

simulation 
[sec]

Ratio MC 
solution obj. 
fct. / naïve 

obj. fct.

# of v  in the 
MC solution

Tot. # of v  / e
2557 / 2640 6326 / 6960

For each state, we considered three different sizes of the respective road
network graphs: a small graph that corresponds to 25% of the total number of
municipalities, a medium (65-85%) and a full state graph. For each such graph,
we evaluated the performance of the proposed algorithms for three vertex weight
distributions, namely, constant, uniform and positive Gaussian. The constant
distribution assigns the same weight (=1) to all vertices, the uniform draws the
weights uniformly at random from the interval [1,100], whereas the Gaussian
has an expected value of 50 and a standard deviation of 10. Based on these
parameters and the traffic intensities (or vertex demands) for each state, we
measured the ratio between the MC solution objective function and the worst-
case (näıve) solution (which includes all vertices of the graph in the vertex cover),
the number of vertices in the MC solution, the individual vertex capacities and
the duration of the simulation. The values in Table 1 are averaged over 100 runs.

The results confirm that, as predicted by the analytical evaluation, SDF (A2)
performs consistently better than LDF (A1) for all graph sizes. Compared to the



näıve solution, the proposed algorithms achieve a lower mix-zone cost, as low as
34% of the trivial solution cost. For all combinations of parameters, the uniform
distribution achieves the best (lowest) objective function ratio, followed by the
Gaussian and the constant distributions. The uniform distribution, which assigns
(on average) the same weight to an equal number of vertices, makes it easier to
determine feasible capacities to vertices that have a lower weight, while still
covering all edges of the graph. In the Gaussian scenario, most of the weights
will be close to the mean, and thus the search for the vertices that minimize
the weighted cost will be more complex, leading to a worse solution and more
demanding in terms of computation time. In the case where all vertices have the
same weights, there are no chances of finding a feasible solution consisting of
vertices with a lower weight than others. Hence, the ratio of the MC solution to
that of the näıve solution is the worst in this scenario.

Depending on size of the graph and the respective demands, the number of
mix-zones to be deployed is between 46% (Florida) and 58% (Virginia) of the
total number of vertices. In Florida, SDF performs slightly better than LDF as
it requires a smaller number of mix-zones. Although the differences amount to
2-3% (up to 102 fewer mix-zones), such result is consistent across all graph sizes.
In Virginia, on the contrary, LDF performs slightly better than SDF (up to 30
fewer mix-zones). This indicates that, although relatively small, the performance
of the two algorithms are influenced by the road network topology, and further
investigations are required in order to determine the effects of the road topology
on the performance of the proposed algorithms.

Intuitively, as the traffic patterns evolve during the day in each region, such
algorithms would be executed multiple times per day in order to adapt the solu-
tions to the traffic intensities throughout the day. Regarding the execution effi-
ciency, the experimental results show that a feasible solution to the MC problem
can be determined in 13 sec (small graph) and 94 sec (full State graph), which
is a reasonable requirement in case such computations are done in a dynamic
fashion multiple times per day.

In order to avoid unbounded solutions in the LP formulation, we had to
reduce the graph size (and thus the number of constraints) of the road network.
Considering a reduced (Florida) graph with 515 vertices, we obtained a ratio of
0.24 between the objective function of the MC solution with respect to the näıve
one, which is a better result than LDF and SDF, but the fraction of intersections
with mix-zones to the total number of intersections increased to 97%. For such
a small graph, the LP required between 29 seconds (constant distribution) and
66 seconds (Gaussian distribution), which corresponds to two and four times the
requirement of LDF and SDF, respectively, with the same weight distributions.
Similar relative differences were obtained when increasing the number of vertices
from 515 to 1024, except that the durations grew by a factor of 20 as compared
to LDF and SDF. The results suggest that the LP formulation yields on average
better (lower) costs for the mix-zone deployment, at the expense of a significant
increase in computation time and number of mix-zones. Hence, the LP approach



appears to be better suited for smaller graphs with a lower intersection/road
density, such as peripheral and rural areas.

6 Conclusion

We addressed the problem of optimizing mix-zone placement in pervasive net-
working applications by formulating it as a graph-based optimization problem,
referred to as the Mix Cover or MC problem. We proposed three algorithms
to solve the MC problem: the first algorithm is based on a LP relaxation of
the problem and the remaining two approaches take advantage of a “divide and
conquer” strategy proposed by Xu et al. [47]. We proved important analytical re-
sults, such as the solution quality and running-time guarantees, for the proposed
approaches. In order to shed light on their feasibility in a realistic pervasive net-
work setting, we performed extensive experimental evaluation of the proposed
approaches with real road network and traffic data. Experimental results con-
firmed the analytical results and also showed that these approaches can compute
an approximate mix cover, even for fairly large road networks, in a reasonable
amount of time using standard computing resources.
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Appendices

Proof (Proof for Lemma 1). The first part of the lemma is straightforward. As
the vertex and edge sets of both G and G′ are the same, a cover for G′ (that
covers all edges of G′) is also a cover for G. Moreover, as the edge demands
are rounded off to the largest and then to the closest power of 2, the selected
capacity of the vertices for a solution (or mix cover) in G′ will always be greater
than the demands of the corresponding edges in G. Thus, a mix cover for G′ is
also a feasible mix cover for G.

Now, let us prove the second part. Let VOPT (G) be the set of vertices of the
optimal solution OPT (G) for the MC problem on the graph instance G and
let COPT (G) = {c(vi)|vi ∈ VOPT (G)} be the capacities assigned to each vertex
in the optimal solution. Consider a solution S such that it has the same set of
vertices as VOPT (G) and with capacities CS = {2(c(vi)+α)|vi ∈ S}, where α is as
defined above. We can see that (S,CS) is always a feasible solution to G′. This is
because, firstly, we always select the larger demand value for each edge e. Thus,
even in the worst case, where all vertices vi ∈ VOPT (G) in the optimal solution
OPT (G) are such that dvie < d

vj
e ,∀e ≡ (vi, vj) ∈ E, capacities selected in CS

will always overcome the difference in demands. Secondly, the rounded demands
of each edge e is only at most twice that of the original (larger) demand. Thus,

OPT (G′) ≤
∑
vi∈S

2(c(vi) + α)

≤
∑
vi∈S

2αc(vi) ≤ 2αOPT (G) ut

Proof (Proof for Theorem 2). For the sake of convenience, let us denote the IP
formulation of the MC problem as IP-MC and its LP relaxation as LP-MC. It is
easy to see that any optimal solution OPT to IP-MC is also a feasible solution
to the LP-MC and has the same objective function value. Moreover, LP-MC is



indeed a relaxation of IP-MC and an optimal solution (x̄, {z̄e}) to LP-MC is
a feasible fractional solution to IP-MC. Thus, we can see that the value of the
objective function (as the objective functions for both the formulations are the
same) of an optimal solution (x̄, {z̄e}) to LP-MC is at most that of the optimal
solution OPT to IP-MC. Now, given the optimal solution (x̄, {z̄e}) to LP-MC,
we know that for any e ≡ (u, v) ∈ E, as zue +zve ≥ 1, at least one of the following
zue ≥ 1

2 or zve ≥ 1
2 is true. Let us apply the following transformation δ to (x̄, {z̄e}):

If ze,i ≥ 1
2 , for any e and i, then δ(ze,i) = 1 and if ze,i <

1
2 then put δ(ze,i) = 0.

Also, δ(xi) = 2xi if for any i ∈ V there is δ(ze,i) = 1.
It is easy to see that δ(x̄, {z̄e}) is a feasible solution to the IP-MC problem.

Moreover, the linearity of the objective function guarantees that the objective
function value (or the total weighted cost) of δ(x̄, {z̄e}) is at most twice the
objective function value of (x̄, {z̄e}). As the cost of (x̄, {z̄e}) is at most OPT , the
cost of δ(x̄, {z̄e}) is at most two times the cost of OPT , i.e., δ(x̄, {z̄e}) ≤ 2·OPT .
Thus, δ(x̄, {z̄e}) is a 2-approximation of the MC problem. Moreover, as LP-MC
can be solved in polynomial time [6], the proof follows. ut
Proof (Proof for Theorem 3). Let WV C−2Approx(Gk) denote the output (over-
all minimum weight) of applying a β-approximation minimum WVC algorithm
to the subgraph Gk of G′. If OPT (Gk) is the corresponding optimal solution,
then we have the following inequality:

WVC-2Approx(Gk) ≤ βOPT (Gk)

OPT (Gk) ≥ 1

β
WVC-2Approx(Gk) (1)

From Lemma 2 of [47] we know that,

OPT (G′) ≥ 1

2

K∑
k=0

2kOPT (Gk) (2)

where K is max. value of the exponent after the rounding. From Lemma 1,

OPT (G′) ≤ 2αOPT (G) (3)

From (1) and (2), we have

OPT (G′) ≥ 1

2

K∑
k=0

2k

β
WVC-2Approx(Gk)

≥ 1

2β

K∑
k=0

2kWVC-2Approx(Gk)

Combining the above inequality with Eqn. 3 we have,

2αOPT (G) ≥ 1

2β

K∑
k=0

2kWVC-2Approx(Gk)

K∑
k=0

2kWVC-2Approx(Gk) ≤ 4αβOPT (G) (4)



The left-hand side of the inequality in (4) clearly denotes the objective function
computed from the output of the LDF algorithm. From this inequality, it is clear
that the LDF algorithm is a 4αβ-approximation of the MC problem.

Now, let us observe the time complexity of the LDF algorithm. Tasks such
as determining the larger demand per edge, rounding the demand value and
assigning capacities can be completed in linear time, in the worst-case. Moreover,
Bar-Yehuda and Even [7] showed that a 2-approximation can be obtained for a
WVC problem in linear time. Thus, the LDF algorithm runs in linear time. ut

Proof (Proof for Theorem 4). We use a similar argument that we use to prove
Theorem 3. From Eqn. 1 in the proof of Theorem 3 we know that:

OPT (Gk) ≥ 1

β
WVC-2Approx(Gk)

where, β is the approximation ration of the weighted vertex cover algorithm
WVC-2Approx and Gk is the induced subgraph of G′′ with edge demands 2k.
Now, let K ′′ be the maximum value of the exponent (of 2) after the round-
ing the shortest demands on each edge. From Lemma 2 of [47] we know that,

OPT (G′′) ≥ 1
2

∑K
k=0 2kOPT (Gk). From Lemma 2 we have,OPT (G′′) ≤ 2

αOPT (G)
From the above we have,

2

α
OPT (G) ≥ 1

2

K∑
k=0

2kOPT (Gk)

4OPT (G) ≥ α
K∑
k=0

2kOPT (Gk)

4βOPT (G) ≥ α
K∑
k=0

2kWVC-2Approx(Gk)

4βOPT (G) ≥
K∑
k=0

(2k + α)WVC-2Approx(Gk) (5)

The right-hand side of (5) clearly denotes an upper bound on the objective
function computed by the SDF algorithm. From this inequality, it is clear that
the SDF algorithm is a 4β-approximation algorithm for the MC problem.

Now, let us observe the time complexity of the SDF algorithm. The SDF
algorithm has an additional step, as compared to the LDF algorithm, which is
the largest demand determination on each vertex. It is easy to see that this step,
in the worst case, takes O(n2) additional steps and thus one order of time more
than the LDF algorithm. ut


