19,541 research outputs found
An equatorial ultra iron-poor star identified in BOSS
We report the discovery of SDSS J131326.89-001941.4, an ultra iron-poor red
giant star ([Fe/H] ~ -4.3) with a very high carbon abundance ([C/Fe]~ +2.5).
This object is the fifth star in this rare class, and the combination of a
fairly low effective temperature (Teff ~ 5300 K), which enhances line
absorption, with its brightness (g=16.9), makes it possible to measure the
abundances of calcium, carbon and iron using a low-resolution spectrum from the
Sloan Digital Sky Survey. We examine the carbon and iron abundance ratios in
this star and other similar objects in the light of predicted yields from
metal-free massive stars, and conclude that they are consistent. By way of
comparison, stars with similarly low iron abundances but lower carbon-to-iron
ratios deviate from the theoretical predictions.Comment: 6 pages, 4 figures, accepted for publication in A&
Lubrication performance of an ammonium cation-based ionic liquid used as an additive in a polar oil.
This paper studies the tribological behavior of the ionic liquid methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([N 1888 ][NTf 2 ]) as additive at different concentrations (1.25, 2.50, 3.75 and 5.00 wt%) in a polar base oil (diester). A tribometer using a ball-on-disk reciprocating configuration under fully flooded lubrication was used at a frequency of 15 Hz, at three different loads (40, 80 and 120 N), stroke length of 4 mm, and duration of 45 min. Worn surface on the disk was studied by confocal microscopy, SEM and XPS. Main results showed similar coefficient of friction for all lubricant samples; but different wear results were found at different loads, probably related with the chemical states found for fluorine on the worn surface and the temperature-dependent adsorption-desorption processes
Present and future ecological niche modeling of garter snake species from the Trans-Mexican Volcanic Belt
Articulo producto parcial de tesis doctoralLand use and climate change are affecting the abundance and distribution of species. The Trans-Mexican Volcanic Belt (TMVB) is a very diverse region due to geological history, geographic position, and climate. It is also one of the most disturbed regions in Mexico. Reptiles are particularly sensitive to environmental changes due to their low dispersal capacity and thermal ecology. In this study, we define the important environmental variables (considering climate, topography, and land use) and potential distribution (present and future) of the five Thamnophis species present in TMVB. To do so, we used the maximum entropy modeling software (MAXENT). First, we modeled to select the most important variables to explain the distribution of each species, then we modeled again using only the most important variables and projected these models to the future considering a middle-moderate climate change scenario (rcp45), and land use and vegetation variables for the year 2050 (generated according to land use changes that occurred between years 2002 and 2011). Arid vegetation had an important negative effect on habitat suitability for all species, and minimum temperature of the coldest month was important for four of the five species. Thamnophis cyrtopsis was the species with the lowest tolerance to minimum temperatures. The maximum temperature of the warmest month was important for T. scalaris and T. cyrtopsis. Low percentages of agriculture were positive for T. eques and T. melanogaster but, at higher values, agriculture had a negative effect on habitat suitability for both species. Elevation was the most important variable to explain T. eques and T. melanogaster potential distribution while distance to Abies forests was the most important variable for T. scalaris and T. scaliger. All species had a high proportion of their potential distribution in the TMVB. However, according to our models, all Thamnophis species will experience reductions in their potential distribution in this region. T. scalaris will suffer the biggest reduction because this species is limited by high temperatures and will not be able to shift its distribution upward, as it is already present in the highest elevations of the TMVB.Universidad Autónoma del Estado de México: 4047/2016SF. CONACY
Resolving galaxies in time and space: II: Uncertainties in the spectral synthesis of datacubes
In a companion paper we have presented many products derived from the
application of the spectral synthesis code STARLIGHT to datacubes from the
CALIFA survey, including 2D maps of stellar population properties and 1D
averages in the temporal and spatial dimensions. Here we evaluate the
uncertainties in these products. Uncertainties due to noise and spectral shape
calibration errors and to the synthesis method are investigated by means of a
suite of simulations based on 1638 CALIFA spectra for NGC 2916, with
perturbations amplitudes gauged in terms of the expected errors. A separate
study was conducted to assess uncertainties related to the choice of
evolutionary synthesis models. We compare results obtained with the Bruzual &
Charlot models, a preliminary update of them, and a combination of spectra
derived from the Granada and MILES models. About 100k CALIFA spectra are used
in this comparison.
Noise and shape-related errors at the level expected for CALIFA propagate to
0.10-0.15 dex uncertainties in stellar masses, mean ages and metallicities.
Uncertainties in A_V increase from 0.06 mag in the case of random noise to 0.16
mag for shape errors. Higher order products such as SFHs are more uncertain,
but still relatively stable. Due to the large number statistics of datacubes,
spatial averaging reduces uncertainties while preserving information on the
history and structure of stellar populations. Radial profiles of global
properties, as well as SFHs averaged over different regions are much more
stable than for individual spaxels. Uncertainties related to the choice of base
models are larger than those associated with data and method. Differences in
mean age, mass and metallicity are ~ 0.15 to 0.25 dex, and 0.1 mag in A_V.
Spectral residuals are ~ 1% on average, but with systematic features of up to
4%. The origin of these features is discussed. (Abridged)Comment: A&A, accepte
Stability of the Horizontal Curvature of the LHC Cryodipoles During Cold Tests
The LHC will be composed of 1232 horizontally curved, 15 meter long, superconducting dipole magnets cooled at 1.9 K. They are supported within their vacuum vessel by three Glass Fiber Reinforced Epoxy (GFRE) support posts. Each cryodipole is individually cold tested at CERN before its installation and interconnection in the LHC 27 km circumference tunnel. As the magnet geometry under cryogenic operation is extremely important for the LHC machine aperture, a new method has been developed at CERN in order to monitor the magnet curvature change between warm and cold states. It enabled us to conclude that there is no permanent horizontal curvature change of the LHC dipole magnet between warm and cold states, although a systematic horizontal transient deformation during cool-down was detected. This deformation generates loads in the dipole supporting system; further investigation permitted us to infer this behavior to the asymmetric thermal contraction of the rigid magnet thermal shield during cool-down. Controlling the helium flow rate in the thermal shield of the cryomagnet enabled us to reduce the maximal deformation by a factor of approximately two, thus increasing significantly the mechanical safety margin of the supporting system during the CERN cold tests
The Caveolin-1 Connection to Cell Death and Survival
Nunez, S (Nunez, S.)[ 1,4 ] 1. Fac Med, CEMC, Lab Comunicac Celulares, Santiago, Chile. 4. Univ Talca, Fac Hlth Sci, Talca, ChileCaveolins are a family of membrane proteins required for the formation of small plasma membrane invaginations called caveolae that are implicated in cellular trafficking processes. In addition to this structural role, these scaffolding proteins modulate numerous intracellular signaling pathways; often via direct interaction with specific binding partners. Caveolin-1 is particularly well-studied in this respect and has been attributed a large variety of functions. Thus, Caveolin-1 also represents the best-characterized isoform of this family with respect to its participation in cancer. Rather strikingly, available evidence indicates that Caveolin-1 belongs to a select group of proteins that function, depending on the cellular settings, both as tumor suppressor and promoter of cellular traits commonly associated with enhanced malignant behavior, such as metastasis and multi-drug resistance. The mechanisms underlying such ambiguity in Caveolin-1 function constitute an area of great interest. Here, we will focus on discussing how Caveolin-1 modulates cell death and survival pathways and how this may contribute to a better understanding of the ambiguous role this protein plays in cancer
Physics and Mathematics of Calogero particles
We give a review of the mathematical and physical properties of the
celebrated family of Calogero-like models and related spin chains.Comment: Version to appear in Special Issue of Journal of Physics A:
Mathematical and Genera
Scalar dark energy models mimicking CDM with arbitrary future evolution
Dark energy models with various scenarios of evolution are considered from
the viewpoint of the formalism for the equation of state. It is shown that
these models are compatible with current astronomical data. Some of the models
presented here evolve arbitrarily close to CDM up to the present, but
diverge in the future into a number of different possible asymptotic states,
including asymptotic de-Sitter (pseudo-rip) evolution, little rips with
disintegration of bound structures, and various forms of finite-time future
singularities. Therefore it is impossible from observational data to determine
whether the universe will end in a future singularity or not. We demonstrate
that the models under consideration are stable for a long period of time
(billions of years) before entering a Little Rip/Pseudo-Rip induced dissolution
of bound structures or before entering a soft finite-time future singularity.
Finally, the physical consequences of Little Rip, Type II, III and Big Crush
singularities are briefly compared.Comment: 15 pages, 1 figure, version to appear in Physics Letters
Characterization of a Subsurface Biosphere in a Massive Sulfide Deposit At Rio Tinto, Spain: Implications For Extant Life On Mars
The recent discovery of abundant sulfate minerals, particularly Jarosite by the Opportunity Rover at Sinus Merdiani on Mars has been interpreted as evidence for an acidic lake or sea on ancient Mars [1,2], since the mineral Jarosite is soluble in liquid water at pH above 4. The most likely mechanism to produce sufficient protons to acidify a large body of liquid water is near surface oxidation of pyrite rich deposits [3]. The acidic waters of the Rio Tinto, and the associated deposits of Hematite, Goethite, and Jarosite have been recognized as an important chemical analog to the Sinus Merdiani site on Mars [4]. The Rio Tinto is a river in southern Spain that flows 100 km from its source in the Iberian pyrite belt, one of the Earth's largest Volcanically Hosted Massive Sulfide (VHMS) provinces, into the Atlantic ocean. The river originates in artesian springs emanating from ground water that is acidified by the interaction with subsurface pyrite ore deposits. The Mars Analog Rio Tinto Experiment (MARTE) has been investigating the hypothesis that a subsurface biosphere exists at Rio Tinto living within the VHMS deposit living on chemical energy derived from sulfur and iron minerals. Reduced iron and sulfur might provide electron donors for microbial metabolism while in situ oxidized iron or oxidants entrained in recharge water might provide electron acceptors
- …
