2,058 research outputs found

    The abandoned ice sheet base at Camp Century, Greenland, in a warming climate

    Get PDF
    In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within the ice sheet. The base and its wastes were abandoned with minimal decommissioning in 1967, under the assumption they would be preserved for eternity by perpetually accumulating snowfall. Here we show that a transition in ice sheet surface mass balance at Camp Century from net accumulation to net ablation is plausible within the next 75 years, under a business-as-usual anthropogenic emissions scenario (Representative Concentration Pathway 8.5). Net ablation would guarantee the eventual remobilization of physical, chemical, biological, and radiological wastes abandoned at the site. While Camp Century and four other contemporaneous ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their abandoned wastes, previously regarded as sequestered, represents an entirely new pathway of political dispute resulting from climate change

    Separation and identification of dominant mechanisms in double photoionization

    Full text link
    Double photoionization by a single photon is often discussed in terms of two contributing mechanisms, {\it knock-out} (two-step-one) and {\it shake-off} with the latter being a pure quantum effect. It is shown that a quasi-classical description of knock-out and a simple quantum calculation of shake-off provides a clear separation of the mechanisms and facilitates their calculation considerably. The relevance of each mechanism at different photon energies is quantified for helium. Photoionization ratios, integral and singly differential cross sections obtained by us are in excellent agreement with benchmark experimental data and recent theoretical results.Comment: 4 pages, 5 figure

    Optogalvanic Signals From Argon Metastables In A Rf Glow-Discharge

    Get PDF
    Laser optogalvanic (LOG) signals at 667.7, 751.5, and 696.5 nm from the 3 P 1 and 3 P 2 levels of Ar were studied at a pressure of 250 mTorr in a rf glow discharge. Signals with unexpected signs and time dependences were found. The results are interpreted as being due to radiative trapping effects and collisional mixing between resonance and metastable levels. An average electron energy of 2.1 eV is derived from modeling the data

    The Impact of 18 Ancestral and Horizontally-Acquired Regulatory Proteins upon the Transcriptome and sRNA Landscape of Salmonella enterica serovar Typhimurium

    Get PDF
    Article Authors Metrics Comments Media Coverage Abstract Author Summary Introduction Results and Discussion Materials and Methods Supporting Information Acknowledgments Author Contributions References Reader Comments (0) Media Coverage (0) Figures Abstract We know a great deal about the genes used by the model pathogen Salmonella enterica serovar Typhimurium to cause disease, but less about global gene regulation. New tools for studying transcripts at the single nucleotide level now offer an unparalleled opportunity to understand the bacterial transcriptome, and expression of the small RNAs (sRNA) and coding genes responsible for the establishment of infection. Here, we define the transcriptomes of 18 mutants lacking virulence-related global regulatory systems that modulate the expression of the SPI1 and SPI2 Type 3 secretion systems of S. Typhimurium strain 4/74. Using infection-relevant growth conditions, we identified a total of 1257 coding genes that are controlled by one or more regulatory system, including a sub-class of genes that reflect a new level of cross-talk between SPI1 and SPI2. We directly compared the roles played by the major transcriptional regulators in the expression of sRNAs, and discovered that the RpoS (σ38) sigma factor modulates the expression of 23% of sRNAs, many more than other regulatory systems. The impact of the RNA chaperone Hfq upon the steady state levels of 280 sRNA transcripts is described, and we found 13 sRNAs that are co-regulated with SPI1 and SPI2 virulence genes. We report the first example of an sRNA, STnc1480, that is subject to silencing by H-NS and subsequent counter-silencing by PhoP and SlyA. The data for these 18 regulatory systems is now available to the bacterial research community in a user-friendly online resource, SalComRegulon

    Validation of Nike Fuel Band Step Counter in Children with Visual Impairments

    Get PDF
    Please view abstract in the attached PDF file

    Spitzer IRS Observations of the Galactic Center: Shocked Gas in the Radio Arc Bubble

    Full text link
    We present Spitzer IRS spectra (R ~600, 10 - 38 micron) of 38 positions in the Galactic Center (GC), all at the same Galactic longitude and spanning plus/minus 0.3 degrees in latitude. Our positions include the Arches Cluster, the Arched Filaments, regions near the Quintuplet Cluster, the ``Bubble'' lying along the same line-of-sight as the molecular cloud G0.11-0.11, and the diffuse interstellar gas along the line-of-sight at higher Galactic latitudes. From measurements of the [O IV], [Ne II], [Ne III], [Si II], [S III], [S IV], [Fe II], [Fe III], and H_2 S(0), S(1), and S(2) lines we determine the gas excitation and ionic abundance ratios. The Ne/H and S/H abundance ratios are ~ 1.6 times that of the Orion Nebula. The main source of excitation is photoionization, with the Arches Cluster ionizing the Arched Filaments and the Quintuplet Cluster ionizing the gas nearby and at lower Galactic latitudes including the far side of the Bubble. In addition, strong shocks ionize gas to O^{+3} and destroy dust grains, releasing iron into the gas phase (Fe/H ~ 1.3 times 10^{-6} in the Arched Filaments and Fe/H ~ 8.8 times 10^{-6} in the Bubble). The shock effects are particularly noticeable in the center of the Bubble, but O+3^{+3} is present in all positions. We suggest that the shocks are due to the winds from the Quintuplet Cluster Wolf-Rayet stars. On the other hand, the H_2 line ratios can be explained with multi-component models of warm molecular gas in photodissociation regions without the need for H_2 production in shocks.Comment: 51 pages, 17 figures To be published in the Astrophysical Journa
    corecore