90 research outputs found

    Free vibrations of thermally stressed orthotropic plates with various boundary conditions

    Get PDF
    An analytical investigation of the vibrations of thermally stressed orthotropic plates in the prebuckled region is presented. The investigation covers the broad class of trapezoidal plates with two opposite sides parallel. Each edge of the plate may be subjected to different uniform boundary conditions. variable thickness and arbitrary temperature distributions (analytical or experimental) for any desired combination of boundary conditions may be prescribed. Results obtained using this analysis are compared to experimental results obtained for isotropic plates with thermal stress, and to results contained in the literature for orthotropic plates without thermal stress. Good agreement exists for both sets of comparisons

    Suppression of properties associated with malignancy in murine melanoma-melanocyte hybrid cells.

    Get PDF
    Murine and human melanoma cells differ relatively reliably from non-tumorigenic melanocytes in certain biological properties. When cultured at low pH, melanocytes tend to be pigmented and melanoma cells unpigmented. The growth of virtually all metastatic melanoma cells is inhibited by phorbol esters such as TPA (12-O-tetradecanoyl phorbol-13-acetate), which stimulate melanocyte growth. Melanocytes fail to grow in suspension culture or produce tumours when implanted in animals, while many melanoma lines can do both. Here we studied which of these properties were dominant in hybrid cells formed by fusion of drug-resistant murine B16-F10RR melanoma cells to melanocytes of the albino and brown lines, melan-c and melan-b. The albino melanocytes are unpigmented but well-differentiated, the brown melanocytes produce pale brown pigment and the melanoma cells are unpigmented under the conditions used. All hybrid colonies observed produced black pigment, except some melan-b/melanoma hybrids when growing sparsely with TPA. Thus pigmentation was generally dominant. 14/15 hybrid lines showed stimulation of proliferation by TPA, as do melanocytes. Most hybrid lines showed no or reduced capacity for growth in suspension, though some grew better in suspension when TPA was present. There was marked suppression of the tumorigenicity of the parental melanoma cells in 4/8 hybrids examined, and tumorigenicity was reduced in the others, despite considerable chromosome loss by the passage level tested. Thus most properties of the non-tumorigenic pigment cells were dominant, as often observed for other cell lineages, and providing further evidence for gene loss in the genesis of malignant melanoma

    The characterisation of Wickerhamomyces anomalus M15, a highly tolerant yeast for bioethanol production using seaweed derived medium

    Get PDF
    Advanced generation biofuels have potential for replacing fossil fuels as society moves forward into a net-zero carbon future. Marine biomass is a promising source of fermentable sugars for fermentative bioethanol production; however the medium derived from seaweed hydrolysis contains various inhibitors, such as salts that affected ethanol fermentation efficiency. In this study the stress tolerance of a marine yeast, Wickerhamomyces anomalus M15 was characterised. Specific growth rate analysis results showed that Wickerhamomyces anomalus M15 could tolerate up to 600 g/L glucose, 150 g/L xylose and 250 g/L ethanol, respectively. Using simulated concentrated seaweed hydrolysates, W. anomalus M15’s bioethanol production potential using macroalgae derived feedstocks was assessed, in which 5.8, 45.0, and 19.9 g/L ethanol was produced from brown (Laminaria digitata), green (Ulva linza) and red seaweed (Porphyra umbilicalis) based media. The fermentation of actual Ulva spp. hydrolysate harvested from United Kingdom shores resulted in a relatively low ethanol concentration (15.5 g/L) due to challenges that arose from concentrating the seaweed hydrolysate. However, fed-batch fermentation using simulated concentrated green seaweed hydrolysate achieved a concentration of 73 g/L ethanol in fermentations using both seawater and reverse osmosis water. Further fermentations conducted with an adaptive strain W. anomalus M15-500A showed improved bioethanol production of 92.7 g/L ethanol from 200 g/L glucose and reduced lag time from 93 h to 24 h in fermentation with an initial glucose concentration of 500 g/L. The results indicated that strains W. anomalus M15 and W. anomalus M15-500A have great potential for industrial bioethanol production using marine biomass derived feedstocks. It also suggested that if a concentrated high sugar content seaweed hydrolysate could be obtained, the bioethanol concentration could achieve 90 g/L or above, exceeding the minimum industrial production threshold

    The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain

    Get PDF
    Current technologies for bioethanol production rely on the use of freshwater for preparing the fermentation media and use yeasts of a terrestrial origin. Life cycle assessment has suggested that between 1,388 to 9,812 litres of freshwater are consumed for every litre of bioethanol produced. Hence, bioethanol is considered a product with a high-water footprint. This paper investigated the use of seawater-based media and a novel marine yeast strain ‘Saccharomyces cerevisiae AZ65’ to reduce the water footprint of bioethanol. Results revealed that S. cerevisiae AZ65 had a significantly higher osmotic tolerance when compared with the terrestrial reference strain. Using 15-L bioreactors, S. cerevisiae AZ65 produced 93.50 g/L ethanol with a yield of 83.33% (of the theoretical yield) and a maximum productivity of 2.49 g/L/h when using seawater-YPD media. This approach was successfully applied using an industrial fermentation substrate (sugarcane molasses). S. cerevisiae AZ65 produced 52.23 g/L ethanol using molasses media prepared in seawater with a yield of 73.80% (of the theoretical yield) and a maximum productivity of 1.43 g/L/h. These results demonstrated that seawater can substitute freshwater for bioethanol production without compromising production efficiency. Results also revealed that marine yeast is a potential candidate for use in the bioethanol industry especially when using seawater or high salt based fermentation media

    Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes

    Get PDF
    The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR

    Photochemical dihydrogen production using an analogue of the active site of [NiFe] hydrogenase

    Get PDF
    The photoproduction of dihydrogen (H2) by a low molecular weight analogue of the active site of [NiFe] hydrogenase has been investigated by the reduction of the [NiFe2] cluster, 1, by a photosensitier PS (PS = [ReCl(CO)3(bpy)] or [Ru(bpy)3][PF6]2). Reductive quenching of the 3MLCT excited state of the photosensitiser by NEt3 or N(CH2CH2OH)3 (TEOA) generates PS•−, and subsequent intermolecular electron transfer to 1 produces the reduced anionic form of 1. Time-resolved infrared spectroscopy (TRIR) has been used to probe the intermediates throughout the reduction of 1 and subsequent photocatalytic H2 production from [HTEOA][BF4], which was monitored by gas chromatography. Two structural isomers of the reduced form of 1 (1a•− and 1b•−) were detected by Fourier transform infrared spectroscopy (FTIR) in both CH3CN and DMF (dimethylformamide), while only 1a•− was detected in CH2Cl2. Structures for these intermediates are proposed from the results of density functional theory calculations and FTIR spectroscopy. 1a•− is assigned to a similar structure to 1 with six terminal carbonyl ligands, while calculations suggest that in 1b•− two of the carbonyl groups bridge the Fe centres, consistent with the peak observed at 1714 cm−1 in the FTIR spectrum for 1b•− in CH3CN, assigned to a ν(CO) stretching vibration. The formation of 1a•− and 1b•− and the production of H2 was studied in CH3CN, DMF and CH2Cl2. Although the more catalytically active species (1a•− or 1b•−) could not be determined, photocatalysis was observed only in CH3CN and DMF

    The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae

    Get PDF
    [Background] Low-temperature growth and fermentation of wine yeast can enhance wine aroma and make them highly desirable traits for the industry. Elucidating response to cold in Saccharomyces cerevisiae is, therefore, of paramount importance to select or genetically improve new wine strains. As most enological traits of industrial importance in yeasts, adaptation to low temperature is a polygenic trait regulated by many interacting loci.[Results] In order to unravel the genetic determinants of low-temperature fermentation, we mapped quantitative trait loci (QTLs) by bulk segregant analyses in the F13 offspring of two Saccharomyces cerevisiae industrial strains with divergent performance at low temperature. We detected four genomic regions involved in the adaptation at low temperature, three of them located in the subtelomeric regions (chromosomes XIII, XV and XVI) and one in the chromosome XIV. The QTL analysis revealed that subtelomeric regions play a key role in defining individual variation, which emphasizes the importance of these regions’ adaptive nature.[Conclusions] The reciprocal hemizygosity analysis (RHA), run to validate the genes involved in low-temperature fermentation, showed that genetic variation in mitochondrial proteins, maintenance of correct asymmetry and distribution of phospholipid in the plasma membrane are key determinants of low-temperature adaptation.This work has been financially supported from the Spanish Government through MINECO and FEDER funds (AGL2013-47300-C3-3-R and PCIN-2015-143 grants) and from Generalitat Valenciana through PROMETEOII/2014/042 grant, awarded to JMG. This study has been carried out in the context of the European Project ERA-IB “YeastTempTation” EGR thanks the Spanish government for an FPI grant BES-2011-044498 and MM also thanks the Generalitat Valenciana for a VALi+d ACIF/2015/194 grant. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe
    corecore