572 research outputs found

    On the characterization of the compact embedding of Sobolev spaces

    Full text link
    For every positive regular Borel measure, possibly infinite valued, vanishing on all sets of pp-capacity zero, we characterize the compactness of the embedding W^{1,p}({\bf R}^N)\cap L^p ({\bf R}^N,\mu)\hr L^q({\bf R}^N) in terms of the qualitative behavior of some characteristic PDE. This question is related to the well posedness of a class of geometric inequalities involving the torsional rigidity and the spectrum of the Dirichlet Laplacian introduced by Polya and Szeg\"o in 1951. In particular, we prove that finite torsional rigidity of an arbitrary domain (possibly with infinite measure), implies the compactness of the resolvent of the Laplacian.Comment: 19 page

    Optimization problems involving the first Dirichlet eigenvalue and the torsional rigidity

    Get PDF
    We present some open problems and obtain some partial results for spectral optimization problems involving measure, torsional rigidity and first Dirichlet eigenvalue.Comment: 18 pages, 4 figure

    On a classical spectral optimization problem in linear elasticity

    Full text link
    We consider a classical shape optimization problem for the eigenvalues of elliptic operators with homogeneous boundary conditions on domains in the NN-dimensional Euclidean space. We survey recent results concerning the analytic dependence of the elementary symmetric functions of the eigenvalues upon domain perturbation and the role of balls as critical points of such functions subject to volume constraint. Our discussion concerns Dirichlet and buckling-type problems for polyharmonic operators, the Neumann and the intermediate problems for the biharmonic operator, the Lam\'{e} and the Reissner-Mindlin systems.Comment: To appear in the proceedings of the workshop `New Trends in Shape Optimization', Friedrich-Alexander Universit\"{a}t Erlangen-Nuremberg, 23-27 September 201

    Time-evolving measures and macroscopic modeling of pedestrian flow

    Full text link
    This paper deals with the early results of a new model of pedestrian flow, conceived within a measure-theoretical framework. The modeling approach consists in a discrete-time Eulerian macroscopic representation of the system via a family of measures which, pushed forward by some motion mappings, provide an estimate of the space occupancy by pedestrians at successive time steps. From the modeling point of view, this setting is particularly suitable to treat nonlocal interactions among pedestrians, obstacles, and wall boundary conditions. In addition, analysis and numerical approximation of the resulting mathematical structures, which is the main target of this work, follow more easily and straightforwardly than in case of standard hyperbolic conservation laws, also used in the specialized literature by some Authors to address analogous problems.Comment: 27 pages, 6 figures -- Accepted for publication in Arch. Ration. Mech. Anal., 201

    Higher-order scalar interactions and SM vacuum stability

    Get PDF
    Investigation of the structure of the Standard Model effective potential at very large field strengths opens a window towards new phenomena and can reveal properties of the UV completion of the SM. The map of the lifetimes of the vacua of the SM enhanced by nonrenormalizable scalar couplings has been compiled to show how new interactions modify stability of the electroweak vacuum. Whereas it is possible to stabilize the SM by adding Planck scale suppressed interactions and taking into account running of the new couplings, the generic effect is shortening the lifetime and hence further destabilisation of the SM electroweak vacuum. These findings have been illustrated with phase diagrams of modified SM-like models. It has been demonstrated that stabilisation can be achieved by lowering the suppression scale of higher order operators while picking up such combinations of new couplings, which do not deepen the new minima of the potential. Our results show the dependence of the lifetime of the electroweak minimum on the magnitude of the new couplings, including cases with very small couplings (which means very large effective suppression scale) and couplings vastly different in magnitude (which corresponds to two different suppression scales).Comment: plain Latex, 9 figure

    The heart of a convex body

    Get PDF
    We investigate some basic properties of the {\it heart} (K)\heartsuit(\mathcal{K}) of a convex set K.\mathcal{K}. It is a subset of K,\mathcal{K}, whose definition is based on mirror reflections of euclidean space, and is a non-local object. The main motivation of our interest for (K)\heartsuit(\mathcal{K}) is that this gives an estimate of the location of the hot spot in a convex heat conductor with boundary temperature grounded at zero. Here, we investigate on the relation between (K)\heartsuit(\mathcal{K}) and the mirror symmetries of K;\mathcal{K}; we show that (K)\heartsuit(\mathcal{K}) contains many (geometrically and phisically) relevant points of K;\mathcal{K}; we prove a simple geometrical lower estimate for the diameter of (K);\heartsuit(\mathcal{K}); we also prove an upper estimate for the area of (K),\heartsuit(\mathcal{K}), when K\mathcal{K} is a triangle.Comment: 15 pages, 3 figures. appears as "Geometric Properties for Parabolic and Elliptic PDE's", Springer INdAM Series Volume 2, 2013, pp 49-6

    On the two-dimensional rotational body of maximal Newtonian resistance

    Get PDF
    We investigate, by means of computer simulations, shapes of nonconvex bodies that maximize resistance to their motion through a rarefied medium, considering that bodies are moving forward and at the same time slowly rotating. A two-dimensional geometric shape that confers to the body a resistance very close to the theoretical supremum value is obtained, improving previous results.Comment: This is a preprint version of the paper published in J. Math. Sci. (N. Y.), Vol. 161, no. 6, 2009, 811--819. DOI:10.1007/s10958-009-9602-

    Scheduling periodic tasks in a hard real-time environment

    Get PDF
    We consider a real-time scheduling problem that occurs in the design of software-based aircraft control. The goal is to distribute tasks aui=(ci,pi) au_i=(c_i,p_i) on a minimum number of identical machines and to compute offsets aia_i for the tasks such that no collision occurs. A task aui au_i releases a job of running time cic_i at each time ai+kcdotpi,kinmathbbN0a_i + kcdot p_i,k in mathbb{N}_0 and a collision occurs if two jobs are simultaneously active on the same machine. We shed some light on the complexity and approximability landscape of this problem. Although the problem cannot be approximated within a factor of n1varepsilonn^{1-varepsilon} for any varepsilon>0varepsilon>0, an interesting restriction is much more tractable: If the periods are dividing (for each i,ji,j one has pipjp_i | p_j or pjpip_j | p_i), the problem allows for a better structured representation of solutions, which leads to a 2-approximation. This result is tight, even asymptotically

    ATLAS Z Excess in Minimal Supersymmetric Standard Model

    Get PDF
    Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.Comment: 13 pages, 7 figures; published versio

    Self-consistent radiative corrections to false vacuum decay

    Get PDF
    With the Higgs mass now measured at the sub-percent level, the potential metastability of the electroweak vacuum of the Standard Model (SM) motivates renewed study of false vacuum decay in quantum field theory. In this note, we describe an approach to calculating quantum corrections to the decay rate of false vacua that is able to account fully and self-consistently for the underlying inhomogeneity of the solitonic tunneling configuration. We show that this method can be applied both to theories in which the instability arises already at the level of the classical potential and those in which the instability arises entirely through radiative effects, as is the case for the SM Higgs vacuum. We analyse two simple models in the thin-wall regime, and we show that the modifications of the one-loop corrections from accounting fully for the inhomogeneity can compete at the same level as the two-loop homogeneous corrections
    corecore