This paper deals with the early results of a new model of pedestrian flow,
conceived within a measure-theoretical framework. The modeling approach
consists in a discrete-time Eulerian macroscopic representation of the system
via a family of measures which, pushed forward by some motion mappings, provide
an estimate of the space occupancy by pedestrians at successive time steps.
From the modeling point of view, this setting is particularly suitable to
treat nonlocal interactions among pedestrians, obstacles, and wall boundary
conditions. In addition, analysis and numerical approximation of the resulting
mathematical structures, which is the main target of this work, follow more
easily and straightforwardly than in case of standard hyperbolic conservation
laws, also used in the specialized literature by some Authors to address
analogous problems.Comment: 27 pages, 6 figures -- Accepted for publication in Arch. Ration.
Mech. Anal., 201