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Abstract: Investigation of the structure of the Standard Model effective potential at very

large field strengths opens a window towards new phenomena and can reveal properties of

the UV completion of the SM. The map of the lifetimes of the vacua of the SM enhanced

by nonrenormalizable scalar couplings has been compiled to show how new interactions

modify stability of the electroweak vacuum. Whereas it is possible to stabilize the SM by

adding Planck scale suppressed interactions and taking into account running of the new

couplings, the generic effect is shortening the lifetime and hence further destabilisation of

the SM electroweak vacuum. These findings have been illustrated with phase diagrams of

modified SM-like models. It has been demonstrated that stabilisation can be achieved by

lowering the suppression scale of higher order operators while picking up such combinations

of new couplings, which do not deepen the new minima of the potential. Our results show

the dependence of the lifetime of the electroweak minimum on the magnitude of the new

couplings, including cases with very small couplings (which means very large effective

suppression scale) and couplings vastly different in magnitude (which corresponds to two

different suppression scales).
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1 Introduction

The discovery of the 126 GeV scalar particle, which in the light of available data can be

identified with the Standard Model Higgs boson, and absence of experimental signature of

any new physical state in the LHC experiments makes it important to search for possible

windows towards new phenomena within the Stadard Model itself. One of the possible

windows is the investigation of the structure of the effective potential in the Standard

Model which has been the subject of considerable activity [1–9].

The study of the renormalisation group improved effective SM potential has revealed an

interesting structure at field strenghts higher than approximately 1011 GeV and new minima

at superplanckian field strenghts. The upshot depends critically on the precise value of the

measured Higgs mass and on the measured value of the top quark Yukawa coupling. In

particular, one finds that for the central value of the top mass and for the central value of

the measured Higgs mass the physical electroweak symmetry breaking minimum becomes

metastable with respect to the tunneling from the physical EWSB minimum to a deeper

minimum located at superplanckian values of the Higgs field strength. The computed

lifetime of the metastable SM Universe turns out larger than the presently estimated age

of the Universe, however the instability border in the space of parameters Mtop −Mhiggs

looks uncomfortably close and this suggests that the result is rather sensitive to various

types of modifications that can be brought in by the BSM extensions.

The question about stability of the SM vacuum in the presence of ultraviolet comple-

tions at or below the planck scale is the central point of this note. In the paper [1] higher

order operators have been added to the scalar potential of the neutral higgs field. The
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operators are suppressed by suitable powers of the Planck scale and for sensible values of

the new couplings they were found to modify significantly the behaviour of the potential

near the Planck scale. It has been shown and illustrated by examples in [1], that Planck

scale operators can indeed produce a minimum near the Planck scale, however they can

also destabilize the SM metastable minimum with respect to the tunneling to a deeper

minimum at high field strenghths.

Here we study the question further, making a more complete map of the vacua in the

SM extended by nonrenormalisable scalar couplings. taking into account the running of

the new couplings and going beyond the standard assumptions taken when calculating the

lifetime of the metastable vacuum. Usually, one uses certain quasi-analytic approxima-

tions of the effective potential, [10], for the purpose of calculating the tunneling rate. In

particular, one uses as the departure point the calculation for the quartic-like form of the

effective potential at large field strenghts, while in the modified scalar potential it is the

order 6 or order 8 coupling which naively dominates the potential in the large field do-

main. It is important to check the validity of such approximation and to search through a

relatively wide scope of new couplings to find the actual behaviour of the scalar potential.

The ultimate tool in this case is the direct numerical analysis, which however is not so

straightforward because of the flatness of the effective potential. In this paper we present

currently available resulats of such extended analysis of the modified SM scalar potential.

For the purpose of the present paper we have suppressed nonrenormalisable operators with

derivatives. In general, we confirm that it is relatively easy to destabilize the SM with

the help of the Planck scale suppressed scalar operators. However, there exists choices of

higher-dimensional couplings which meta-stabilize the SM vacuum.

2 New interactions

In what follows we shall assume the Lagrangian of the Standard Mode augmented by two

higher dimensional operators proportional to |H|6 and |H|8, where H is the Higgs doublet.

They are suppressed by a large mass scale M to an appropriate power. Being interested

only in the direction H = (φ/
√

2, 0), we obtain a potential of the form (similar to [1]):

V = −m
2

2
φ2 +

λ

4
φ4 +

λ6

6!

φ6

M2
+
λ8

8!

φ8

M4
. (2.1)

It is well known that effects of radiative corrections to SM couplings on the vacuum are large

and so these couplings require precise determination [2]. We have used two-loop running

of the SM parameters [5] and computed one-loop corrections to the new interactions. The

correction to the running of the quatric Higgs coupling is of the form

∆βλ =
λ6

16π2

m2

M2
, (2.2)

and its contribution is negligible for m � M . One-loop beta functions of new couplings

take the form

16π2βλ6 =
10

7
λ8
m2

M2
+ 18λ66λ− 6λ6

(
9

4
g2

2 +
9

20
g2

1 − 3y2
t

)
, (2.3)

16π2βλ8 =
7

5
28λ2

6 + 30λ86λ− 8λ8

(
9

4
g2

2 +
9

20
g2

1 − 3y2
t

)
,
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Figure 1. Example solution of renormalisation group equations for couplings λ6(Mp) = −1 and

λ8(Mp) = −0.1.

Figure 2. Potential corresponding to couplings from figure 1 (blue line) together with the Standard

Model potential (purple line).

which agrees with [12]. Figure 1 shows an example of running of the new couplings and

figure 2 shows the resulting potential with λ6(Mp) = −1, λ8(Mp) = −0.1 and suppression

scale M = Mp.

3 Tunneling rate

To calculate the expected lifetime of a metastable vacuum present in potential V (φ) we use

the standard formalism of finding a bounce solution [13, 14] which in the O(4) symmetric

case depends only on s =
√
~x2 + x2

4. This means solving an equation of motion of the form

φ̈+
3

s
φ̇ =

∂V (φ)

∂φ
, (3.1)

with a dot denoting a derivative with respect to s. The boundary conditions are φ̇(0) = 0,

so that the solution is non-singular at s = 0, and φ(∞) = φmin so that it corresponds to

the decay of the metastable vacuum positioned at φmin.

The above assumes canonical form of the kinetic term (∂φ)2 in the Lagrangian. We

have suppressed nonrenormalisable operators with derivatives. For operators with two
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derivatives one can use field redefinition suggested in [15]: φ −→ φ̃
(

1 + a φ̃2

M2 + b φ̃
4

M4

)
, to

bring troublesome operators ∂µφ∂
µφ
(
c1

φ2

M2 + c2
φ4

M4

)
to the form of the operators already

included in (2.1) which allows us to use (3.1) with shifted couplings λ6 → λ̃6 and λ8 → λ̃8.

However, derivative operators which are not of this form, like operators with 4 derivatives,

induce a modification of (3.1) that can further destabilize the already unstable vacua.

Analysis of the complete set of operators of order eight lies beyond the scope of this paper.

Having found the bounce, we calculate its euclidean action given by

SE =

∫
d4x

{
1

2

4∑
α=1

(
∂φ(x)

∂xα

)2

+ V (φ(x))

}
= 2π2

∫
dss3

(
1

2
φ̇2(s) + V (φ(s))

)
, (3.2)

which allows us to calculate decay probability of a volume d3x

dp = dtd3x
S2
E

4π2

∣∣∣∣ det′[−∂2 + V ′′(φ)]

det[−∂2 + V ′′(φmin)]

∣∣∣∣−1/2

e−SE . (3.3)

To calculate the expected lifetime we simply integrate that probability assuming size of

the universe TU = 1010yr in the spatial directions and define the expected lifetime τ as

time at which decay probability is equal to 1. We also approximate the determinant and

normalization prefactor by another dimensionfull quantity encountered in our problem,

namely φ0 = φ(0). The error introduced that way is small compared to uncertainty in

determination of action, because lifetime depends only on fourth power of φ0 while its

dependence on action is exponential,

τ

TU
=

1

φ4
0T

4
U

eSE . (3.4)

In the following sections we will present known analytical approximations and compare

their results with our numerical solution. As the suppression scale we use the Planck mass,

M = MP , unless stated otherwise (see: the Lowering the magnitude of the suppression

scale section below).

3.1 Analytical solution

Possibly the simplest scheme for estimating the vacuums lifetime, often conjectured for the

SM (eg. [2]), amounts to calculating the quantity in (3.4) as

τ

TU
=

1

Λ4
BT

4
U

e
8π2

3
1

|λeff(ΛB)| , (3.5)

where λeff(φ)
4 = Veff(φ)

φ4 , Veff being the effective potential, and ΛB denoting a renormalisation

scale that minimises λeff . This approach utilises the fact that for a wide range of energy

scales, λeff is close to a constant negative value −|b| ≈ −0.014. Bounce solution for the

simple quartic potential of the form − |b|4 φ
4 is known [10] and its action is exactly 8π2

3
1
|b| .

Thus, taking minimum of λeff , one estimates the action of a true bounce from below.

Simultaneously, the picked ΛB value serves as the only characteristic scale for the bounce

since the quartic potential is classically scale invariant.
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Figure 3. Decimal logatihm of lifetime of the universe in units of TU as a function of the non-

renormalisable λ6 and λ8 couplings, calculated with formula (3.5). For λ6 and λ8 kept constant

(left panel) and λ6 and λ8 scale dependent and satisfying their one-loop RGE’s (right panel).

Simplifying further, we approximate λeff only by the RGE-improved quasiquartic cou-

pling λ4(φ) + 4
6!

λ6

M2
P
φ2 + 4

8!
λ8

M4
P
φ4, neglecting both the mass term and running of the field

itself in the tree-level Veff . We use two approaches. Firstly we also completely ignore the

RGE-running of λ6 and λ8. Then we include them in the set of RGE equations and make

them scale dependent according to (2.2) and (2.3).

When λ6 and λ8 do not run, λeff does not have a global minimum for λ8 < 0. Thus

we can calculate the value (3.5) only for the range of positive λ8’s. The l.h.s. of figure 3

shows a contour plot of log10
τ
TU

for −1 < λ6 < 1 and 0 < λ8 < 1. In the region where λ6

is negative enough, λeff develops new minimum (as compared to SM) at scales close to MP

and the exponent in (3.5) becomes small, rendering the vacuum short-lived.

Next we include the running of λ6 and λ8. It has small influence on the position of the

log10
τ
TU

= 0 contour. The novelty is that now, even when put negative at the Planck scale,

λ8 eventually becomes positive and so λeff posseses global minimum, thus enabling us to

use the formula (3.5) in wider range of λ8’s. The right panel of figure 3. shows the plot

of log10
τ
TU

for the values of λ6(MP ) and λ8(MP ) between −1 and 1 as put at the Planck

scale. The region where λeff does not develop a global minimum at the renormalisation

scale lower than M2
P was excluded (white color).

Another way of breaking the scale invariance of quartic potential (originally presented

in [10] and recently used in [1]) would be to sew it with a linear function

Vη(φ) =

{
− bη

4 φ
4 , φ 6 η

− bη
4 η

4 −K (φ− η) , φ > η
, (3.6)

where
bη
4 = −Veff(η)

η4 = −λeff(η)
4 . One then still needs to choose the sewing point η and the

slope parameter K, to approximate the effective potential. It is conceivable to sew the two

functions at any point, on the plot of Veff on left hand side of figure 2. Evidently certain

level of arbitrariness is present in choosing the bounce this way.

Moreover, no special bounce solution is singled out unless the ratio of derivatives at

η, −γ =
bη η3

K , falls into the region 0 < −γ < 1, [10]. The action of a bounce is then given

– 5 –
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by Sη =
8π2

3

1

bη
(1− (γ + 1)4), and its starting point, φ0 = η(2 + γ), lies in the linear part

of Vη. In the case when −γ > 1, all the bounce solutions lie in the quartic part of Vη only

and the effect of sewing it with the linear function amounts again to arbitrarily choosing

the value of quartic coupling λeff(η) (and the scale of the bounce ΛB = η) in (3.5).

One could be tempted to destabilise the vacuum by a steep linear function (large K)

but generally, in order for Vη to seemingly reproduce the shape of Veff near the global

minimum, one has to put −γ close to 1 and η of the order of MP . It follows that the main

effect of lowering the action in (3.4) by the unrenormalisable operators comes from the

increase of |λeff |, just like in the previously described scheme.

As a check, we have calculated the log10
τ
TU

(for nonrunning −1 < λ6 < 1, 0 < λ8 < 1),

putting −K = V ′eff(η) and η equal to the potentials inflection point (V ′′eff(η) = 0). The

results were qualitatively similar to the ones presented above: in particular the log10
τ
TU

= 0

contour remained practically unmoved.

3.2 Numerical result

The numerical procedure we used is based on finding solutions to the equation of mo-

tion (3.1), by an overshot/undershot method. First we solve starting from the true vaccuum

at very small s = ε and expanding the solution into a series to get

φ ≈ φ0 +
ε2

8

∂V (φ)

∂φ

∣∣∣∣
φ=φ0

, (3.7)

φ̇ ≈ ε

4

∂V (φ)

∂φ

∣∣∣∣
φ=φ0

.

Than we use simple bisection to find φ0 for which φ(∞) is the electroweak minimum.

Next we solve the equation of motion again, this time starting from the electroweak

minimum. We first expand the field and potential around the minimum

φ ≈ φmin + φ∞, (3.8)

∂V (φ)

∂φ
≈ m2φ∞.

Thus we get a simplified equation of motion which is solved by modified Bessel functions,

so we can express the initial conditions as

φ∞ = A
K1(s)

s
, (3.9)

φ̇∞ = −A K2(s)

s
. (3.10)

These conditions are solved to obtain φ̇∞ as a function of φ∞. We then again use simple

bisection to find φ∞ which minimizes the field derivative at a very small s = ε near the

true vacuum.

Numerical problems arise in this scenario because standard model potential is very flat

and the change induced by the new couplings appears only around the Planck scale, so we

– 6 –
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Figure 4. Decimal logarithm of lifetime of the universe in units of TU as a function of constant

couplings λ6 and λ8.

have to solve the equation of motion through sixteen orders of magnitude in the field φ.

For this reason it is very hard to choose numerical values of ε and ∞ for parameter s such

that the bisection converges to the desired solution. Hence we only required that one of

the above methods converged at any given point.

The resulting lifetimes are shown in figure 4 for constant couplings λ6 and λ8. We can

distinguish 3 different areas in figure 4. The first one with both new couplings positive

corresponds to the SM potential stabilised by new interactions at the Planck scale. The

resulting lifetimes are very close to SM one, because the bounce solution with SM potential

starts at field values smaller than Planck mass (φ0 < Mp). The second region with λ8 < 0

corresponds to a potential unbounded from below, and as we can see a quickly decaying

bounce solution appears when λ8 becomes negative. The last region with positive λ8 but

negative λ6 corresponds to a stabilized potential with a new minimum around the Planck

scale which can be approximated with an analytical solution described in the previous

section.

To further increase the accuracy of above prediction we solved the equation of mo-

tion (3.1) numerically taking into account the 1-loop running of λ6 and λ8 from equation

(2.3) together with 2-loop Standard Model RGEs. The resulting lifetimes are shown in

figure 5.

Examples of running of new couplings in figure 1 show that their values can change

significantly, but the most important qualitative difference comes from the λ2
6 contribution

to the running of λ8 (see equation (2.3)). In figure 1 we see that for large enough λ6 it

can stabilize the potential by pushing λ8 to positive values not far above the Planck scale,

when λ8(Mp) is negative but has small enough modulus. This effect bends the metastability

curve in figure 5 towards more negative λ8 near edges of the plot where |λ6| is large.

3.3 Comparison of different methods

Figure 6 shows comparison of results obtained using the methods described above. The

analytical approximation is accurate enough for qualitative analysis, however more careful

numerical analysis results in a larger stability region. The same can be said about the

– 7 –



J
H
E
P
0
5
(
2
0
1
4
)
1
1
9

Figure 5. Decimal logarithm of lifetime of the universe in units of TU as a function of running

couplings λ6 and λ8 calculated at the scale M .

Figure 6. Contours corresponding to metastability boundary (τ = Tu) obtained using four different

methods.

effect of taking into account running of nonrenormalisable couplings, where sufficiently

large contribution from λ6 to running of λ8 can save otherwise unstable vaccua.

4 Standard model phase diagram

To illustrate effects of new nonrenormalisable operators on Standard model vacuum stabil-

ity in figure 7 we show the well known standard model phase diagram (see for example [2])

and the same diagram after inluding new operators, respectively λ6(Mp) = −1/2,−1 and

λ8(Mp) = 1, 1/2. Above plots clearly show that nonrenormalisable interactions supressed

by the Planck mass can drastically change the SM phase diagram, by pushing electroweak

vacuum towards the instability region.

5 Lowering the magnitude of the suppression scale

In this section we will discuss how lowering the suppression scale M in (2.1) changes our

results. To analyse this problem qualitatively it is enough to use the analytical approxima-

– 8 –
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Figure 7. Standard Model phase diagram (left panel), the same diagram after inluding new

operators λ6(Mp) = −1/2 and λ8(Mp) = 1 (middle panel) and λ6(Mp) = −1 and λ8(Mp) = 1/2

(right panel). The white region corresponds to absolute stability, and the black line marks the

instability border.

Figure 8. Scale dependence of λeff

4 = V
φ4 with λ6 = λ8 = 1 for different values of suppression

scale M . The lifetimes corresponding to suppression scales M = 108, 1012, 1016 are, respectively,

log10( τ
TU

) =∞, 1302, 581 while for the Standard Model log10( τ
TU

) = 540.

tion we presented in section 3.1. When nonrenormalisable operators are positive, lowering

the suppression scale M corresponds simply to making the potential positive not far above

M . The action (the exponent in (3.5)) increases because the position of the minimum of

λeff shifts towards smaller energy scales and the value of |λeff | decreases, which is shown in

figure 8. In the case with positive λ8 and negative λ6 this dependence is smaller as shown

in figure 9 . The new minimum is deeper and changing the scale changes λeff by a small

fraction of its value so the resulting lifetimes are much less scale dependent. In fact, in this

case scale dependence of lifetime comes mostly from the prefactor in (3.5), because the size

of the bounce is φ0 ≈ µmin ∝M .

The last possibility is a potential unbounded from below which again corresponds to

quickly decaying solutions, that depend on M very much like in the previous case. Because

their action is very close to zero, the actual dependence of the corresponding lifetime comes

from the size of the bounce in the prefactor of (3.4).
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Figure 9. Scale dependence of λeff

4 = V
φ4 with λ6 = −1 and λ8 = 1 for different values of

suppression scale M . The lifetimes corresponding to suppression scales M = 108, 1012, 1016, are,

respectively, log10( τ
TU

) = −45,−90,−110 while for the Standard Model log10( τ
TU

) = 540.

6 Summary

In this paper we have made a map of the vacua in the SM extended by nonrenormalisable

scalar couplings, taking into account the running of the new couplings and going beyond

the standard assumptions taken when calculating the lifetime of the metastable vacuum.

Usually, one uses certain quasi-analytic approximations of the effective potential, [10], for

the purpose of calculating the tunneling rate. In particular, one uses as the departure point

the calculation for the quartic-like form of the effective potential at large field strenghts,

while in the modified scalar potential it is the order 6 or order 8 coupling which naively

dominates the potential in the large field domain. It is important to check the validity of

such approximation and to search through a relatively wide scope of new couplings to find

the actual behaviour of the scalar potential. The ultimate tool in this case is the direct

numerical analysis, which however is not so straightforward because of the flatness of the

effective potential. In this paper we present currently available results of such extended

analysis of the modified SM scalar potential. For the purpose of the present study we have

suppressed nonrenormalisable operators with derivatives. It should be noted that such

operators can further destabilize the already unstable vacua, however complete study of

this issue lies beyond the scope of this paper.

It turns out that the simplified analytical approach represents reasonably well the ac-

tual numerical results. In general, we confirm that it is relatively easy to destabilise the

SM with the help of the Planck scale suppressed scalar operators. While it is possible to

stabilise the SM by adding such higher dimensional interactions and taking into account

running of the new couplings, the generic effect is shortening the lifetime and hence further

destabilisation of the SM electroweak vaccuum. This conclusion has been illustrated with

the phase diagrams of modified SM-like models. It has been demonstrated that effective

stabilisation can be achieved by lowering the suppression scale of higher order operators

while picking up such combinations of new couplings, which do not deepen the new min-

ima of the potential. Our results show the dependence of the lifetime of the electroweak

– 10 –
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minimum on the magnitude of the new couplings, including cases with very small cou-

plings (which means very large effective suppression scale) and couplings vastly different

in magnitude (which corresponds to two different suppression scales).
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