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Optimization problems involving
the first Dirichlet eigenvalue
and the torsional rigidity
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Abstract. We present some open problems and obtain some partial re-
sults for spectral optimization problems involving measure, torsional
rigidity and first Dirichlet eigenvalue.
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1. Introduction

A shape optimization problem can be written in the very general form

min
{
F (Ω) : Ω ∈ A

}
,

where A is a class of admissible domains and F is a cost functional defined
on A. We consider in the present paper the case where the cost functional
F is related to the solution of an elliptic equation and involves the spectrum
of the related elliptic operator. We speak in this case of spectral optimization
problems. Shape optimization problems of spectral type have been widely
considered in the literature; we mention for instance the papers [14], [18],
[17], [20], [21], [22], [23], [30], and we refer to the books [16], [27], [28], and
to the survey papers [2], [19], [26], where the reader can find a complete list
of references and details.

In the present paper we restrict ourselves for simplicity to the Laplace
operator −∆ with Dirichlet boundary conditions. Furthermore we shall as-
sume that the admissible domains Ω are a priori contained in a given bounded
domain D ⊂ Rd. This assumption greatly simplifies several existence results
that otherwise would require additional considerations in terms of concentra-
tion-compactness arguments [14], [32].
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The most natural constraint to consider on the class of admissible do-
mains is a bound on their Lebesgue measure. Our admissible class A is then

A =
{

Ω ⊂ D : |Ω| ≤ 1
}
.

Other kinds of constraints are also possible, but we concentrate here to the
one above, referring the reader interested in possible variants to the books
and papers quoted above.

The following two classes of cost functionals are the main ones consid-
ered in the literature.

Integral functionals. Given a right-hand side f ∈ L2(D), for every Ω ∈ A
let uΩ be the unique solution of the elliptic PDE

−∆u = f in Ω, u ∈ H1
0 (Ω).

The integral cost functionals are of the form

F (Ω) =

∫
Ω

j
(
x, uΩ(x),∇uΩ(x)

)
dx,

where j is a suitable integrand that we assume convex in the gradient variable.
We also assume that j is bounded from below by

j(x, s, z) ≥ −a(x)− c|s|2,

with a ∈ L1(D) and c smaller than the first Dirichlet eigenvalue of the Laplace
operator −∆ in D. For instance, the energy Ef (Ω) defined by

Ef (Ω) = inf

{∫
D

(1

2
|∇u|2 − f(x)u

)
dx : u ∈ H1

0 (Ω)

}
,

belongs to this class since, integrating by parts its Euler-Lagrange equation,
we have that

Ef (Ω) = −1

2

∫
D

f(x)uΩ dx,

which corresponds to the integral functional above with

j(x, s, z) = −1

2
f(x)s.

The case f = 1 is particularly interesting for our purposes. We denote by wΩ

the torsion function, that is the solution of the PDE

−∆u = 1 in Ω, u ∈ H1
0 (Ω),

and by the torsional rigidity T (Ω) the L1 norm of wΩ,

T (Ω) =

∫
Ω

wΩ dx = −2E1(Ω).

Spectral functionals. For every admissible domain Ω ∈ A we consider
the spectrum Λ(Ω) of the Laplace operator −∆ on H1

0 (Ω). Since Ω has a
finite measure, the operator −∆ has a compact resolvent and so its spectrum
Λ(Ω) is discrete:

Λ(Ω) =
(
λ1(Ω), λ2(Ω), . . .

)
,
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where λk(Ω) are the eigenvalues counted with their multiplicity. The spectral
cost functionals we may consider are of the form

F (Ω) = Φ
(
Λ(Ω)

)
,

for a suitable function Φ : RN → R. For instance, taking Φ(Λ) = λk(Ω) we
obtain

F (Ω) = λk(Ω).

We take the torsional rigidity T (Ω) and the first eigenvalue λ1(Ω) as
prototypes of the two classes above and we concentrate our attention on cost
functionals that depend on both of them. We note that, by the maximum
principle, when Ω increases T (Ω) increases, while λ1(Ω) decreases.

2. Statement of the problem

The optimization problems we want to consider are of the form

min
{

Φ
(
λ1(Ω), T (Ω)

)
: Ω ⊂ D, |Ω| ≤ 1

}
, (2.1)

where we have normalized the constraint on the Lebesgue measure of Ω, and
where Φ is a given continuous (or lower semi-continuous) and non-negative
function. In the rest of this paper we often take for simplicity D = Rd,
even if most of the results are valid in the general case. For instance, taking
Φ(a, b) = ka + b with k a fixed positive constant, the quantity we aim to
minimize becomes

kλ1(Ω) + T (Ω) with Ω ⊂ D, and |Ω| ≤ 1.

Remark 2.1. If the function Φ(a, b) is increasing with respect to a and de-
creasing with respect to b, then the cost functional

F (Ω) = Φ
(
λ1(Ω), T (Ω)

)
turns out to be decreasing with respect to the set inclusion. Since both the
torsional rigidity and the first eigenvalue are γ-continuous functionals and
the function Φ is assumed lower semi-continuous, we can apply the existence
result of [21], which provides the existence of an optimal domain.

In general, if the function Φ does not verify the monotonicity property of
Remark 2.1, then the existence of an optimal domain is an open problem, and
the aim of this paper is to discuss this issue. For simplicity of the presentation
we limit ourselves to the two-dimensional case d = 2. The case of general d
does not present particular difficulties but requires the use of several d−
dependent exponents.

Remark 2.2. The following facts are well known.

i) If B is a disk in R2 we have

T (B) =
1

8π
|B|2.
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ii) If j0,1 ≈ 2.405 is the first positive zero of the Bessel functions J0(x) and
B is a disk of R2 we have

λ1(B) =
π

|B|
j2
0,1.

iii) The torsional rigidity T (Ω) scales as

T (tΩ) = t4T (Ω), ∀t > 0.

iv) The first eigenvalue λ1(Ω) scales as

λ1(tΩ) = t−2λ1(Ω), ∀t > 0.

v) For every domain Ω of R2 and any disk B we have

|Ω|−2T (Ω) ≤ |B|−2T (B) =
1

8π
.

vi) For every domain Ω of R2 and any disk B we have (Faber-Krahn in-
equality)

|Ω|λ1(Ω) ≥ |B|λ1(B) = πj2
0,1.

vii) A more delicate inequality is the so-called Kohler-Jobin inequality (see
[29], [11]): for any domain Ω of R2 and any disk B we have

λ2
1(Ω)T (Ω) ≥ λ2

1(B)T (B) =
π

8
j4
0,1.

This had been previously conjectured by G. Pólya and G.Szegö [31].

We recall the following inequality, well known for planar regions (Section
5.4 in [31]), between torsional rigidity and first eigenvalue.

Proposition 2.3. For every domain Ω ⊂ Rd we have

λ1(Ω)T (Ω) ≤ |Ω|.

Proof. By definition, λ1(Ω) is the infimum of the Rayleigh quotient∫
Ω

|∇u|2 dx
/∫

Ω

u2 dx over all u ∈ H1
0 (Ω), u 6= 0.

Taking as u the torsion function wΩ, we have

λ1(Ω) ≤
∫

Ω

|∇wΩ|2 dx
/∫

Ω

w2
Ω dx.

Since −∆wΩ = 1, an integration by parts gives∫
Ω

|∇wΩ|2 dx =

∫
Ω

wΩ dx = T (Ω),

while the Hölder inequality gives∫
Ω

w2
Ω dx ≥

1

|Ω|

(∫
Ω

wΩ dx

)2

=
1

|Ω|
(
T (Ω)

)2
.

Summarizing, we have

λ1(Ω) ≤ |Ω|
T (Ω)

as required. �
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Remark 2.4. The infimum of λ1(Ω)T (Ω) over open sets Ω of prescribed mea-
sure is zero. To see this, let Ωn be the disjoint union of one ball of volume
1/n and n(n − 1) balls of volume 1/n2. Then the radius Rn of the ball of
volume 1/n is (nωd)

−1/d while the radius rn of the balls of volume 1/n2 is
(n2ωd)

−1/d, so that |Ωn| = 1,

λ1(Ωn) = λ1(BRn) =
1

R2
n

λ1(B1) = (nωd)
2/dλ1(B1),

and

T (Ωn) = T (BRn
) + n(n− 1)T (Brn) = T (B1)

(
Rd+2
n + n(n− 1)rd+2

n

)
= T (B1)ω

−1−2/d
d

(
n−1−2/d + (n− 1)n−1−4/d

)
.

Therefore

λ1(Ωn)T (Ωn) =
λ1(B1)T (B1)

ωd

n2/d + n− 1

n1+2/d
,

which vanishes as n→∞.

In the next section we investigate the inequality of Proposition 2.3.

3. A sharp inequality between torsion and first eigenvalue

We define the constant

Kd = sup

{
λ1(Ω)T (Ω)

|Ω|
: Ω open in Rd, |Ω| <∞

}
.

We have seen in Proposition 2.3 that Kd ≤ 1. The question is if the constant
1 can be improved.

Consider a ball B; performing the shape derivative as in [28], keeping
the volume of the perturbed shapes constant, we obtain for every field V (x)

∂[λ1(B)T (B)](V ) = T (B)∂[λ1(B)](V ) + λ1(B)∂[T (B)](V )

= CB

∫
∂B

V · ndHd−1

for a suitable constant CB . Since the volume of the perturbed shapes is
constant, we have ∫

∂B

V · ndHd−1 = 0,

where Hd−1 denotes (d−1)-dimensional Hausdorff measure. This shows that
balls are stationary for the functional

F (Ω) =
λ1(Ω)T (Ω)

|Ω|
.

Below we will show, by considering rectangles, that balls are not optimal. To
do so we shall obtain a lower bound for the torsional rigidity of a rectangle.
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Proposition 3.1. In a rectangle Ra,b = (−b/2, b/2) × (−a/2, a/2) with a ≤ b
we have

T (Ra,b) ≥
a3b

12
− 11a4

180
.

Proof. Let us estimate the energy

E1(Ra,b) = inf

{∫
Ra,b

(
1

2
|∇u|2 − u

)
dx dy : u ∈ H1

0 (Ra,b)

}
by taking the function

u(x, y) =
a2 − 4y2

8
θ(x),

where θ(x) is defined by

θ(x) =

{
1 ,if |x| ≤ (b− a)/2

(b− 2|x|)/a ,otherwise.

We have

|∇u|2 =

(
a2 − 4y2

8

)2

|θ′(x)|2 + y2|θ(x)|2,

so that

E1(Ra,b) ≤ 2

∫ a/2

0

(
a2 − 4y2

8

)2

dy

∫ b/2

0

|θ′(x)|2 dx

+ 2

∫ a/2

0

y2 dy

∫ b/2

0

|θ(x)|2 dx

− 4

∫ a/2

0

a2 − 4y2

8
dy

∫ b/2

0

θ(x) dx

=
a4

60
+
a3

12

(
b− a

2
+
a

6

)
− a3

6

(
b− a

2
+
a

4

)
= −a

3b

24
+

11a4

360
.

The desired inequality follows since T (Ra,b) = −2E1(Ra,b). �

In d-dimensions we have the following.

Proposition 3.2. If Ωε = ω × (−ε/2, ε, 2), where ω is a convex set in Rd−1

with |ω| <∞, then

T (Ωε) =
ε3

12
|ω|+O(ε4), ε ↓ 0.

We defer the proof to Section 5.
For a ball of radius R we have

λ1(B) =
j2
d/2−1,1

R2
, T (B) =

ωdR
d+2

d(d+ 2)
, |B| = ωdR

d, (3.1)
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so that

F (B) =
λ1(B)T (B)

|B|
=
j2
d/2−1,1

d(d+ 2)
:= αd

For instance, we have

α2 ≈ 0.723, α3 ≈ 0.658, α4 ≈ 0.612.

Moreover, since jν,1 = ν + O(ν1/3), ν → ∞, we have that limd→∞ αd = 1
4 .

A plot of αd is given in Figure 1.

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

Figure 1. The plot of αd for 2 ≤ d ≤ 30.

We now consider a slab Ωε = ω × (0, ε) of thickness ε→ 0. We have by
separation of variables and Proposition 3.2 that

λ1(Ωε) =
π2

ε2
+ λ1(ω) ≈ π2

ε2
, T (Ωε) ≈

ε3|ω|
12

, |Ωε| = ε|ω|,

so that

F (Ωε) ≈
π2

12
≈ 0.822.

This shows that in any dimension the slab is better than the ball. Using
domains in Rd with k small dimensions and d− k large dimensions does not
improve the value of the cost functional F . In fact, if ω is a convex domain
in Rd−k and Bk(ε) a ball in Rk, then by Theorem 5.1 with Ωε = ω × Bk(ε)
we have that

λ1(Ωε) ≈
1

ε2
λ1

(
Bk(1)

)
, T (Ωε) ≈ εk+2|ω|T (Bk(1)), |Ωε| = εk|ω||Bk(1)|,

so that

F (Ωε) ≈
j2
k/2−1,1

k(k + 2)
≤ π2

12
.

This supports the following.

Conjecture 3.3. For any dimension d we have Kd = π2/12, and no domain in
Rd maximizes the functional F for d > 1. The maximal value Kd is asymp-
totically reached by a thin slab Ωε = ω × (0, ε), with ω ⊂ Rd−1, as ε→ 0.



8 M. van den Berg, G. Buttazzo and B. Velichkov

4. The attainable set

In this section we bound the measure by |Ω| ≤ 1. Our goal is to plot the subset
of R2 whose coordinates are the eigenvalue λ1(Ω) and the torsion T (Ω). It is
convenient to change coordinates and to set for any admissible domain Ω,

x = λ1(Ω), y =
(
λ1(Ω)T (Ω)

)−1
.

In addition, define

E =
{

(x, y) ∈ R2 : x = λ1(Ω), y =
(
λ1(Ω)T (Ω)

)−1
for some Ω, |Ω| ≤ 1

}
.

Therefore, the optimization problem (2.1) can be rewritten as

min
{

Φ
(
x, 1/(xy)

)
: (x, y) ∈ E

}
.

Conjecture 4.1. The set E is closed.

We remark that the conjecture above, if true, would imply the existence
of a solution of the optimization problem (2.1) for many functions Φ. Below
we will analyze the variational problem in case Φ(x, y) = kx + 1

xy , where

k > 0.

Theorem 4.2. Let d = 2, 3, · · · , and let

k∗d =
1

2dω
4/d
d j2

d/2−1,1

.

Consider the optimization problem

min {kλ1(Ω) + T (Ω) : |Ω| ≤ 1} . (4.1)

If 0 < k ≤ k∗d then the ball with radius

Rk =

(
2kdj2

d/2−1,1

ωd

)1/(d+4)

(4.2)

is the unique minimizer (modulo translations and sets of capacity 0).
If k > k∗d then the ball B with measure 1 is the unique minimizer.

Proof. Consider the problem (4.1) without the measure constraint

min
{
kλ1(Ω) + T (Ω) : Ω ⊂ Rd

}
. (4.3)

Taking tΩ instead of Ω gives that

kλ1(tΩ) + T (tΩ) = kt−2λ1(Ω) + td+2T (Ω).

The optimal t which minimizes this expression is given by

t =

(
2kλ1(Ω)

(d+ 2)T (Ω)

)1/(d+4)

.

Hence (4.3) equals

min

{
(d+ 4)

(
kd+2

4(d+ 2)d+2
T 2(Ω)λd+2

1 (Ω)

)1/(d+4)

: Ω ⊂ Rd
}
. (4.4)
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By the Kohler-Jobin inequality in Rd, the minimum in (4.4) is attained by
any ball. Therefore the minimum in (4.3) is given by a ball BR such that(

2kλ1(BR)

(d+ 2)T (BR)

)1/(d+4)

= 1.

This gives (4.2). We conclude that the measure constrained problem (4.1)
admits the ball BRk

as a solution whenever ωdR
d
k ≤ 1. That is k ≤ k∗d.

Next consider the case k > k∗d. Let B be the open ball with measure 1.
It is clear that

min{kλ1(Ω) + T (Ω) : |Ω| ≤ 1} ≤ kλ1(B) + T (B).

To prove the converse we note that for k > k∗d,

min
{
kλ1(Ω) + T (Ω) : |Ω| ≤ 1

}
≥ min

{
(k − k∗d)λ1(Ω) : |Ω| ≤ 1

}
+ min

{
k∗dλ1(Ω) + T (Ω) : |Ω| ≤ 1

}
.

(4.5)

The minimum in the first term in the right hand side of (4.5) is attained
for B by Faber-Krahn, whereas the minimum in second term is attained for
BRk∗

d
by our previous unconstrained calculation. Since |BRk∗

d
| = |B| = 1 we

have by (4.5) that

min
{
kλ1(Ω) + T (Ω) : |Ω| ≤ 1

}
≥ (k − k∗d)λ1(B) + k∗dλ1(B) + T (B)

= kλ1(B) + T (B).

Uniqueness of the above minimizers follows by uniqueness of Faber-Krahn
and Kohler-Jobin. �

It is interesting to replace the first eigenvalue in (4.1) be a higher eigen-
value. We have the following for the second eigenvalue.

Theorem 4.3. Let d = 2, 3, · · · , and let

l∗d =
1

2d(2ωd)4/dj2
d/2−1,1

.

Consider the optimization problem

min {lλ2(Ω) + T (Ω) : |Ω| ≤ 1} . (4.6)

If 0 < l ≤ l∗d then the union of two disjoint balls with radii

Rl =

(
ldj2

d/2−1,1

ωd

)1/(d+4)

(4.7)

is the unique minimizer (modulo translations and sets of capacity 0).
If l > l∗d then union of two disjoint balls with measure 1/2 each is the unique
minimizer.
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Proof. First consider the unconstrained problem

min
{
lλ1(Ω) + T (Ω) : Ω ⊂ Rd

}
. (4.8)

Taking tΩ instead of Ω gives that

lλ2(tΩ) + T (tΩ) = lt−2λ2(Ω) + td+2T (Ω).

The optimal t which minimizes this expression is given by

t =

(
2lλ2(Ω)

(d+ 2)T (Ω)

)1/(d+4)

.

Hence (4.8) equals

min

{
(d+ 4)

(
ld+2

4(d+ 2)d+2
T 2(Ω)λd+2

2 (Ω)

)1/(d+4)

: Ω ⊂ Rd
}
. (4.9)

It follows by the Kohler-Jobin inequality, see for example Lemma 6 in [9], that
the minimizer of (4.9) is attained by the union of two disjoint balls BR and
B′R with the same radius. Since λ2(BR ∪B′R) = λ1(BR) and T (BR ∪B′R) =
2T (BR) we have, using (3.1), that the radii of these balls are given by (4.7).
We conclude that the measure constrained problem (4.6) admits the union
of two disjoint balls with equal radius Rl as a solution whenever 2ωdR

d
l ≤ 1.

That is l ≤ l∗d.
Next consider the case l > l∗d. Let Ω be the union of two disjoint balls

B and B′ with measure 1/2 each. Then

min{lλ2(Ω) + T (Ω) : |Ω| ≤ 1} ≤ lλ1(B) + 2T (B).

To prove the converse we note that for l > l∗d,

min
{
lλ2(Ω) + T (Ω) : |Ω| ≤ 1

}
≥ min

{
(l − l∗d)λ2(Ω) : |Ω| ≤ 1

}
+ min

{
l∗dλ2(Ω) + T (Ω) : |Ω| ≤ 1

}
.

(4.10)

The minimum in the first term in the right hand side of (4.10) is attained
for B ∪ B′ by the Krahn-Szegö inequality, whereas the minimum in second
term is attained for the union of two disjoint balls with radius Rl∗d by our
previous unconstrained calculation. Since |BRl∗

d
| = 1/2 = |B| = |B′| we have

by (4.10) that

min{lλ2(Ω) + T (Ω) : |Ω| ≤ 1} ≥ (l − l∗d)λ1(B) + l∗dλ1(B) + 2T (B)

= lλ1(B) + 2T (B).

Uniqueness of the above minimizers follows by uniqueness of Krahn-Szegö and
Kohler-Jobin for the second eigenvalue. �

To replace the first eigenvalue in (4.1) be the j’th eigenvalue (j > 2)
is a very difficult problem since we do not know the minimizers of the j’th
Dirichlet eigenvalue with a measure constraint nor the minimizer of the j’th
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Dirichlet eigenvalue a torsional rigidity constraint. However, if these two prob-
lems have a common minimizer then information similar to the above can be
obtained.

Putting together the facts listed in Remark 2.2 we obtain the following
inequalities.

(i) By Faber-Krahn inequality we have x ≥ πj2
0,1 ≈ 18.168.

(ii) By Conjecture 3.3 (if true) we have y ≥ 12/π2 ≈ 1.216.
(iii) By the bound on the torsion of Remark 2.2 v) we have xy ≥ 8π ≈ 25.133.
(iv) By the Kohler-Jobin inequality we have y/x ≤ 8/(πj4

0,1) ≈ 0.076.
(v) The set E is conical, that is if a point (x0, y0) belongs to E, then all the

half-line
{

(tx0, ty0) : t ≥ 1
}

in contained in E. This follows by taking
Ωt = Ω/t and by the scaling properties iii) and iv) of Remark 2.2.

(vi) The set E is vertically convex, that is if a point (x0, y0) belongs to E,
then all points (x0, ty0) with 1 ≤ t ≤ 8/(πj4

0,1) belong to E. To see
this fact, let Ω be a domain corresponding to the point (x0, y0) ∈ E.
The continuous Steiner symmetrization path Ωt (with t ∈ [0, 1]) then
continuously deforms the domain Ω = Ω0 into a ball B = Ω1, preserving
the Lebesgue measure and decreasing λ1(Ωt) (see [13] where this tool
has been developed, and Section 6.3 of [16] for a short survey). The
curve

x(t) = λ1(Ωt), y(t) =
(
λ1(Ωt)T (Ωt)

)−1

then connects the point (x0, y0) to the Kohler-Jobin line
{
y = 8x/(πj4

0,1)
}

,

having x(t) decreasing. Since
(
x(t), y(t)

)
∈ E, the conicity of E then

implies vertical convexity.

A plot of the constraints above is presented in Figure 2. Some particular cases

Figure 2. The admissible region E is contained in the dark area.

can be computed explicitly. Consider d = 2, and let

Ω = BR ∪Br,with BR ∩Br = ∅, r ≤ R, and π(R2 + r2) = 1.
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An easy computation gives that

λ1(Ω) =
j2
0,1

R2
, T (Ω) =

2π2R4 − 2πR2 + 1

8π
,

so that the curve

y =
8πx

x2 − 2πj2
0,1x+ 2π2j4

0,1

, πj2
0,1 ≤ x ≤ 2πj2

0,1

is contained in E (see Figure 3).

20 25 30 35

1.0

1.5

2.0

2.5

Figure 3. The dashed line corresponds to two disks of vari-
able radii.

If we consider the rectangle

Ω = (0, b)× (0, a), with a ≤ b, and ab = 1,

we have by Proposition 3.1

λ1(Ω) = π2

(
1

a2
+

1

b2

)
= π2

(
1

a2
+ a2

)
,

T (Ω) ≥ a3b

12
− 11a4

180
=
a2

12
− 11a4

180
.

Therefore y ≤ h
(
x/(2π2)

)
, where

h(t) =
90

π2t
(
11 + 15t− 22t2 − (15 + 2t)

√
t2 − 1

) , t ≥ 1.

By E being conical the curve

y = h
(
x/(2π2)

)
, π2 ≤ x < +∞

is contained in E (see Figure 4).
Besides the existence of optimal domains for problem (2.1), the regular-

ity of optimal shapes is another very delicate and important issue. Very little
is known about the regularity of optimal domains for spectral optimization
problems (see for instance [12], [15], [25], [32]); the cases where only the first
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20 25 30 35 40 45 50
0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 4. The dashed line is an upper bound to the line
corresponding to rectangles.

eigenvalue λ1(Ω) and the torsion T (Ω) are involved could be simpler and
perhaps allow to use the free boundary methods developed in [1].

5. Torsional rigidity and the heat equation

It is well known that the rich interplay between elliptic and parabolic partial
differential equations provide tools for obtaining results in one field using
tools from the other. See for example the monograph by E. B. Davies [24],
and [3, 5, 6, 7, 8, 10] for some more recent results. In this section we use some
heat equation tools to obtain new estimates for the torsional rigidity. Before
we do so we recall some basic facts relating the torsional rigidity to the heat
equation. For an open set Ω in Rd with boundary ∂Ω we denote the Dirichlet
heat kernel by pΩ(x, y; t), x ∈ Ω, y ∈ Ω, t > 0. So

uΩ(x; t) :=

∫
Ω

pΩ(x, y; t) dy,

is the unique weak solution of
∂u

∂t
= ∆u x ∈ Ω, t > 0,

limt↓0 u(x; t) = 1 in L2(Ω),

u(x; t) = 0 x ∈ ∂Ω, t > 0.

The latter boundary condition holds at all regular points of ∂Ω. We denote
the heat content of Ω at time t by

QΩ(t) =

∫
Ω

uΩ(x; t) dx.

Physically the heat content represents the amount of heat in Ω at time t if
Ω has initial temperature 1, while ∂Ω is kept at temperature 0 for all t > 0.
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Since the Dirichlet heat kernel is non-negative, and monotone in Ω we have
that

0 ≤ pΩ(x, y; t) ≤ pRd(x, y; t) = (4πt)−d/2e−|x−y|
2/(4t). (5.1)

It follows by either (5.1) or by the maximum principle that

0 ≤ uΩ(x; t) ≤ 1,

and that if |Ω| <∞ then

0 ≤ QΩ(t) ≤ |Ω|. (5.2)

In the latter situation we also have an eigenfunction expansion for the Dirich-
let heat kernel in terms of the Dirichlet eigenvalues λ1(Ω) ≤ λ2(Ω) ≤ · · · ,
and a corresponding orthonormal set of eigenfunctions {ϕ1, ϕ2, · · · },

pΩ(x, y; t) =

∞∑
j=1

e−tλj(Ω)ϕj(x)ϕj(y).

We note that the eigenfunctions are in Lp(Ω) for all 1 ≤ p ≤ ∞. It follows
by Parseval’s formula that

QΩ(t) =

∞∑
j=1

e−tλj(Ω)

(∫
Ω

ϕj dx

)2

≤ e−tλ1(Ω)
∞∑
j=1

(∫
Ω

ϕj dx

)2

= e−tλ1(Ω)|Ω|.

(5.3)

Since the torsion function is given by

wΩ(x) =

∫ ∞
0

uΩ(x; t) dt,

we have that

T (Ω) =

∞∑
j=1

λj(Ω)−1

(∫
Ω

ϕj dx

)2

.

We recover Proposition 2.3. by integrating (5.3) with respect to t over [0,∞):

T (Ω) ≤ λ1(Ω)−1
∞∑
j=1

(∫
Ω

ϕj dx

)2

= λ1(Ω)−1|Ω|.

Let M1 and M2 be two open sets in Euclidean space with finite Lebesgue
measures |M1| and |M2| respectively. Let M = M1 ×M2. We have that

pM1×M2
(x, y; t) = pM1

(x1, y1; t)pM2
(x2, y2; t),

where x = (x1, x2), y = (y1, y2). It follows that

QM (t) = QM1
(t)QM2

(t), (5.4)

and

T (M) =

∫ ∞
0

QM1
(t)QM2

(t) dt. (5.5)
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Integrating (5.4) with respect to t, and using (5.2) for M2 we obtain that

T (M) ≤ T (M1)|M2|. (5.6)

This upper bound should be “sharp” if the decay of QM2
(t) with respect

to t is much slower than the decay of QM1(t). The result below makes this
assertion precise in the case where M2 is a convex set with Hd2−1(∂M2) <∞.
The latter condition is for convex sets equivalent to requiring that M2 is
bounded. Here Hd2−1 denotes the (d2 − 1)-dimensional Hausdorff measure.

Theorem 5.1. Let M = M1 ×M2, where M1 is an arbitrary open set in Rd1
with finite d1-measure and M2 is a bounded convex open set in Rd2 . Then
there exists a constant Cd2 depending on d2 only such that

T (M) ≥ T (M1)|M2| − Cd2λ1(M1)−3/2|M1|Hd2−1(∂M2). (5.7)

For the proof of Theorem 5.1 we need the following lemma (proved as
Lemma 6.3 in [4]).

Lemma 5.2. For any open set Ω in Rd,

uΩ(x; t) ≥ 1− 2

∫
{y∈Rd:|y−x|>d(x)}

pRd(x, y; t) dy, (5.8)

where
d(x) = min{|x− z| : z ∈ ∂Ω}.

Proof of Theorem 5.1. With the notation above we have that

T (M) = T (M1)|M2| −
∫ ∞

0

QM1
(t)(|M2| −QM2

(t)) dt

= T (M1)|M2| −
∫ ∞

0

QM1(t)

∫
M2

(1− uM2(x2; t)) dx2 dt.

Define for r > 0,
∂M2(r) = {x ∈M2 : d(x) = r}.

It is well known that (Proposition 2.4.3 in [16]) if M2 is convex then

Hd2−1(∂M2(r)) ≤ Hd2−1(∂M2). (5.9)

By (5.3), (5.8) and (5.9) we obtain that∫ ∞
0

QM1
(t)

∫
M2

(1− uM2
(x2; t)) dx2 dt

≤ 2|M1|Hd2−1(∂M2)

∫ ∞
0

dt e−tλ1(M1)

∫ ∞
0

dr

∫
{z∈Rd2 :|z−x|>r}

pRd2 (x, z; t) dz

= 2d2ωd2 |M1|Hd2−1(∂M2)

∫ ∞
0

dt e−tλ1(M1)(4πt)−d2/2
∫ ∞

0

dr rd2e−r
2/(4t)

= Cd2λ1(M1)−3/2|M1|Hd2−1(∂M2), (5.10)

where

Cd2 =
π1/2d2Γ((d2 + 1)/2)

Γ((d2 + 2)/2)
.

This concludes the proof. �



16 M. van den Berg, G. Buttazzo and B. Velichkov

Proof of Proposition 3.2. Let M1 = (0, ε) ⊂ R, M2 = ω ⊂ Rd−1. Since the
torsion function for M1 is given by x(ε − x)/2, 0 ≤ x ≤ ε we have that
T (M1) = ε3/12. Then (5.6) proves the upper bound. The lower bound follows
from (5.7) since λ1(M1) = π2/ε2, |M1| = ε. �

It is of course possible, using the Faber-Krahn inequality for λ1(M1),
to obtain a bound for the right-hand side of (5.10) in terms of the quantity
|M1|(d1+3)/d1Hd2−1(∂M2).

Our next result is an improvement of Proposition 3.1. The torsional
rigidity for a rectangle follows by substituting the formulae for Q(0,a)(t) and
Q(0,b)(t) given in (5.12) below into (5.5). We recover the expression given on
p.108 in [31]:

T (Ra,b) =
64ab

π6

∑
k=1,3,···

∑
l=1,3,···

k−2l−2

(
k2

a2
+
l2

b2

)−1

.

Nevertheless the following result is not immediately obvious.

Theorem 5.3. ∣∣∣∣T (Ra,b)−
a3b

12
+

31ζ(5)a4

2π5

∣∣∣∣ ≤ a5

15b
, (5.11)

where

ζ(5) =

∞∑
k=1

1

k5
.

Proof. A straightforward computation using the eigenvalues and eigenfunc-
tions of the Dirichlet Laplacian on the interval together with the first identity
in (5.3) shows that

Q(0,a)(t) =
8a

π2

∑
k=1,3,...

k−2e−tπ
2k2/a2 . (5.12)

We write

Q(0,b)(t) = b− 4t1/2

π1/2
+

(
Q(0,b)(t) +

4t1/2

π1/2
− b
)
. (5.13)

The constant term b in the right-hand side of (5.13) gives, using (5.12), a
contribution

8ab

π2

∫
[0,∞)

dt
∑

k=1,3,...

k−2e−tπ
2k2/a2 =

8a3b

π4

∑
k=1,3,...

k−4

=
8a3b

π4

 ∞∑
k=1

k−4 −
∑

k=2,4,...

k−4

 =
15a3b

2π4
ζ(4)

=
a3b

12
,
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which jibes with the corresponding term in (5.11). In a very similar calcula-

tion we have that the − 4t1/2

π1/2 term in the right-hand side of (5.13) contributes

− 32a

π5/2

∫
[0,∞)

dt t1/2
∑

k=1,3,...

k−2e−tπ
2k2/a2 = −31ζ(5)a4

2π5
,

which jibes with the corresponding term in (5.11). It remains to bound the
contribution from the expression in the large round brackets in (5.11). Ap-
plying formula (5.12) to the interval (0, b) instead and using the fact that∑
k=1,3,··· k

−2 = π2/8 gives that

Q(0,b)(t)− b+
4t1/2

π1/2
=

8b

π2

∑
k=1,3,...

k−2
(
e−tπ

2k2/b2 − 1
)

+
4t1/2

π1/2

= −8

b

∑
k=1,3,...

∫
[0,t]

dτe−τπ
2k2/b2 +

4t1/2

π1/2

= −8

b

∫
[0,t]

dτ

( ∞∑
k=1

e−τπ
2k2/b2 −

∞∑
k=1

e−4τπ2k2/b2

)

+
4t1/2

π1/2
.

(5.14)

In order to bound the right-hand side of (5.14) we use the following instance
of the Poisson summation formula.∑

k∈Z
e−tπk

2

= t−1/2
∑
k∈Z

e−πk
2/t, t > 0.

We obtain that

∞∑
k=1

e−tπk
2

=
1

(4t)1/2
− 1

2
+ t−1/2

∞∑
k=1

e−πk
2/t, t > 0.

Applying this identity twice (with t = πτ/b2 and t = 4πτ/b2 respectively)
gives that the right-hand side of (5.14) equals

− 8

π1/2

∫
[0,t]

dτ

(
τ−1/2

∞∑
k=1

e−k
2b2/τ − (4τ)−1/2

∞∑
k=1

e−k
2b2/(4τ)

)
.

Since k 7→ e−k
2b2/τ is non-negative and decreasing,

∞∑
k=1

τ−1/2e−k
2b2/τ ≤ τ−1/2

∫
[0,∞)

dke−k
2b2/τ = π1/2(2b)−1.

It follows that ∣∣∣∣Q(0,b)(t)− b+
4t1/2

π1/2

∣∣∣∣ ≤ 8t

b
, t > 0.
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So the contribution of the third term in (5.13) to T (Ra,b) is bounded in
absolute value by

64a

π2b

∫
[0,∞)

dt t
∑

k=1,3,...

k−2e−tπ
2k2/a2 =

64a5

π6b

∑
k=1,3,...

k−6

=
63a5

π6b
ζ(6)

=
a5

15b
.

This completes the proof of Theorem 5.3. �

The Kohler-Jobin theorem mentioned in Section 2 generalizes to d-
dimensions: for any open set Ω with finite measure the ball minimizes the
quantity T (Ω)λ1(Ω)(d+2)/2. Moreover, in the spirit of Theorem 5.1, the fol-
lowing inequality is proved in [9] through an elementary heat equation proof.

Theorem 5.4. If T (Ω) < ∞ then the spectrum of the Dirichlet Laplacian
acting in L2(Ω) is discrete, and

T (Ω) ≥
(

2

d+ 2

)(
4πd

d+ 2

)d/2 ∞∑
k=1

λk(Ω)−(d+2)/2.

We obtain, using the Ashbaugh-Benguria theorem (p.86 in [27]) for
λ1(Ω)/λ2(Ω), that

T (Ω)λ1(Ω)(d+2)/2

≥
(

2

d+ 2

)(
4πd

d+ 2

)d/2
Γ

(
1 +

d

2

)(
1 +

(
λ1(B)

λ2(B)

)(d+2)/2
)
.

(5.15)

The constant in the right-hand side of (5.15) is for d = 2 off by a factor
j40,1j

4
1,1

8(j40,1+j41,1)
≈ 3.62 if compared with the sharp Kohler-Jobin constant. We

also note the missing factor mm/(m+2) in the right-hand side of (57) in [9].
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