39 research outputs found

    Gamma-ray flaring activity from the gravitationally lensed blazar PKS 1830-211 observed by Fermi LAT

    Get PDF
    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the highly dust-absorbed, reddened, and MeV-peaked flat spectrum radio quasar PKS 1830-211 (z=2.507). Its apparent isotropic gamma-ray luminosity (E>100 MeV) averaged over \sim 3 years of observations and peaking on 2010 October 14/15 at 2.9 X 10^{50} erg s^{-1}, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time delayed variability to follow about 25 days after a primary flare, with flux about a factor 1.5 less. Two large gamma-ray flares of PKS 1830-211 have been detected by the LAT in the considered period and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the gamma rays flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum and with no significant correlation of X-ray flux with the gamma-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and gamma-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.Comment: 14 pages, 6 figures, 2 tables. Accepted by the The Astrophysical Journal. Corresponding authors: S. Ciprini (ASI ASDC & INAF OAR, Rome, Italy), S. Buson (INAF Padova & Univ. of Padova, Padova, Italy), J. Finke (NRL, Washington, DC, USA), F. D'Ammando (INAF IRA, Bologna, Italy

    A systematic review of evidence for fitness-to-drive among people with the mental health conditions of schizophrenia, stress/anxiety disorder, depression, personality disorder and obsessive compulsive disorder

    Get PDF
    BACKGROUND: Limited evidence exists regarding fitness-to-drive for people with the mental health conditions of schizophrenia, stress/anxiety disorder, depression, personality disorder and obsessive compulsive disorder (herein simply referred to as 'mental health conditions'). The aim of this paper was to systematically search and classify all published studies regarding driving for this population, and then critically appraise papers addressing assessment of fitness-to-drive where the focus was not on the impact of medication on driving. METHODS: A systematic search of three databases (CINAHL, PSYCHINFO, EMBASE) was completed from inception to May 2016 to identify all articles on driving and mental health conditions. Papers meeting the eligibility criteria of including data relating to assessment of fitness-to-drive were critically appraised using the American Academy of Neurology and Centre for Evidence-Based Medicine protocols. RESULTS: A total of 58 articles met the inclusion criteria of driving among people with mental health conditions studied, and of these, 16 contained data and an explicit focus on assessment of fitness-to-drive. Assessment of fitness-to-drive was reported in three ways: 1) factors impacting on the ability to drive safely among people with mental health conditions, 2) capability and perception of health professionals assessing fitness-to-drive of people with mental health conditions, and 3) crash rates. The level of evidence of the published studies was low due to the absence of controls, and the inability to pool data from different diagnostic groups. Evidence supporting fitness-to-drive is conflicting. CONCLUSIONS: There is a relatively small literature in the area of driving with mental health conditions, and the overall quality of studies examining fitness-to-drive is low. Large-scale longitudinal studies with age-matched controls are urgently needed in order to determine the effects of different conditions on fitness-to-drive

    A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class

    No full text
    [[abstract]]Weyl fermions are massless chiral fermions that play an important role in quantum field theory but have never been observed as fundamental particles. A Weyl semimetal is an unusual crystal that hosts Weyl fermions as quasiparticle excitations and features Fermi arcs on its surface. Such a semimetal not only provides a condensed matter realization of the anomalies in quantum field theories but also demonstrates the topological classification beyond the gapped topological insulators. Here, we identify a topological Weyl semimetal state in the transition metal monopnictide materials class. Our first-principles calculations on TaAs reveal its bulk Weyl fermion cones and surface Fermi arcs. Our results show that in the TaAs-type materials the Weyl semimetal state does not depend on fine-tuning of chemical composition or magnetic order, which opens the door for the experimental realization of Weyl semimetals and Fermi arc surface states in real materials.[[notice]]補正完
    corecore