290 research outputs found

    The EDELWEISS Experiment : Status and Outlook

    Get PDF
    The EDELWEISS Dark Matter search uses low-temperature Ge detectors with heat and ionisation read- out to identify nuclear recoils induced by elastic collisions with WIMPs from the galactic halo. Results from the operation of 70 g and 320 g Ge detectors in the low-background environment of the Modane Underground Laboratory (LSM) are presented.Comment: International Conference on Dark Matter in Astro and Particle Physics (Dark 2000), Heidelberg, Germany, 10-16 Jul 2000, v3 minor revision

    First Results of the EDELWEISS WIMP Search using a 320 g Heat-and-Ionization Ge Detector

    Full text link
    The EDELWEISS collaboration has performed a direct search for WIMP dark matter using a 320 g heat-and-ionization cryogenic Ge detector operated in a low-background environment in the Laboratoire Souterrain de Modane. No nuclear recoils are observed in the fiducial volume in the 30-200 keV energy range during an effective exposure of 4.53 kg.days. Limits for the cross-section for the spin-independent interaction of WIMPs and nucleons are set in the framework of the Minimal Supersymmetric Standard Model (MSSM). The central value of the signal reported by the experiment DAMA is excluded at 90% CL.Comment: 14 pages, Latex, 4 figures. Submitted to Phys. Lett.

    SICANE: a Detector Array for the Measurement of Nuclear Recoil Quenching Factors using Monoenergetic Neutron Beam

    Get PDF
    SICANE is a neutron scattering multidetector facility for the determination of the quenching factor (ratio of the response to nuclear recoils and to electrons) of cryogenic detectors used in direct WIMP searches. Well collimated monoenergetic neutron beams are obtained with inverse (p,n) reactions. The facility is described, and results obtained for the quenching factors of scintillation in NaI(Tl) and of heat and ionization in Ge are presented.Comment: 30 pages, Latex, 11 figures. Submitted to NIM

    Event categories in the EDELWEISS WIMP search experiment

    Get PDF
    Four categories of events have been identified in the EDELWEISS-I dark matter experiment using germanium cryogenic detectors measuring simultaneously charge and heat signals. These categories of events are interpreted as electron and nuclear interactions occurring in the volume of the detector, and electron and nuclear interactions occurring close to the surface of the detectors(10-20 mu-m of the surface). We discuss the hypothesis that low energy surface nuclear recoils,which seem to have been unnoticed by previous WIMP searches, may provide an interpretation of the anomalous events recorded by the UKDMC and Saclay NaI experiments. The present analysis points to the necessity of taking into account surface nuclear and electron recoil interactions for a reliable estimate of background rejection factors.Comment: 11 pages, submitted to Phys. Lett.

    Optimizing EDELWEISS detectors for low-mass WIMP searches

    Get PDF
    The physics potential of EDELWEISS detectors for the search of low-mass weakly interacting massive particles (WIMPs) is studied. Using a data-driven background model, projected exclusion limits are computed using frequentist and multivariate analysis approaches, namely, profile likelihood and boosted decision tree. Both current and achievable experimental performances are considered. The optimal strategy for detector optimization depends critically on whether the emphasis is put on WIMP masses below or above ∼5  GeV/c2. The projected sensitivity for the next phase of the EDELWEISS-III experiment at the Modane Underground Laboratory (LSM) for low-mass WIMP search is presented. By 2018 an upper limit on the spin-independent WIMP-nucleon cross section of σSI=7×10−42  cm2 is expected for a WIMP mass in the range 2–5  GeV/c2. The requirements for a future hundred-kilogram-scale experiment designed to reach the bounds imposed by the coherent scattering of solar neutrinos are also described. By improving the ionization resolution down to 50  eVee, we show that such an experiment installed in an even lower background environment (e.g., at SNOLAB) together with an exposure of 1000   kg⋅yr, should allow us to observe about 80 8B neutrino events after discrimination

    Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach

    Get PDF
    We report on a dark matter search for a Weakly Interacting Massive Particle (WIMP) in the mass range mχ∈[4,30]GeV/c2 with the EDELWEISS-III experiment. A 2D profile likelihood analysis is performed on data from eight selected detectors with the lowest energy thresholds leading to a combined fiducial exposure of 496 kg-days. External backgrounds from γ- and β-radiation, recoils from 206Pb and neutrons as well as detector intrinsic backgrounds were modelled from data outside the region of interest and constrained in the analysis. The basic data selection and most of the background models are the same as those used in a previously published analysis based on boosted decision trees (BDT) [1]. For the likelihood approach applied in the analysis presented here, a larger signal efficiency and a subtraction of the expected background lead to a higher sensitivity, especially for the lowest WIMP masses probed. No statistically significant signal was found and upper limits on the spin-independent WIMP-nucleon scattering cross section can be set with a hypothesis test based on the profile likelihood test statistics. The 90 % C.L. exclusion limit set for WIMPs with mχ=4GeV/c2 is 1.6×10-39cm2, which is an improvement of a factor of seven with respect to the BDT-based analysis. For WIMP masses above 15GeV/c2 the exclusion limits found with both analyses are in good agreement

    Development of 100^{100}Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search

    Get PDF
    We report recent achievements in the development of scintillating bolometers to search for neutrinoless double-beta decay of 100^{100}Mo. The presented results have been obtained in the framework of the LUMINEU, LUCIFER and EDELWEISS collaborations, and are now part of the R\&D activities towards CUPID (CUORE Update with Particle IDentification), a proposed next-generation double-beta decay experiment based on the CUORE experience. We have developed a technology for the production of large mass (\sim1 kg), high optical quality, radiopure zinc and lithium molybdate crystal scintillators (ZnMoO4_4 and Li2_2MoO4_4, respectively) from deeply purified natural and 100^{100}Mo-enriched molybdenum. The procedure is applied for a routine production of enriched crystals. Furthermore, the technology of a single detector module consisting of a large-volume (100\sim 100~cm3^3) Zn100^{100}MoO4_4 and Li2_2100^{100}MoO4_4 scintillating bolometer has been established, demonstrating performance and radiopurity that are close to satisfy the demands of CUPID. In particular, the FWHM energy resolution of the detectors at 2615 keV --- near the QQ-value of the double-beta transition of 100^{100}Mo (3034~keV) --- is \approx 4--10~keV. The achieved rejection of α\alpha-induced dominant background above 2.6~MeV is at the level of more than 99.9\%. The bulk activity of 232^{232}Th (228^{228}Th) and 226^{226}Ra in the crystals is below 10 μ\muBq/kg. Both crystallization and detector technologies favor Li2_2MoO4_4, which was selected as a main element for the realization of a CUPID demonstrator (CUPID-0/Mo) with \sim7 kg of 100^{100}Mo
    corecore