371 research outputs found

    Yukawa Textures From Heterotic Stability Walls

    Full text link
    A holomorphic vector bundle on a Calabi-Yau threefold, X, with h^{1,1}(X)>1 can have regions of its Kahler cone where it is slope-stable, that is, where the four-dimensional theory is N=1 supersymmetric, bounded by "walls of stability". On these walls the bundle becomes poly-stable, decomposing into a direct sum, and the low energy gauge group is enhanced by at least one anomalous U(1) gauge factor. In this paper, we show that these additional symmetries can strongly constrain the superpotential in the stable region, leading to non-trivial textures of Yukawa interactions and restrictions on allowed masses for vector-like pairs of matter multiplets. The Yukawa textures exhibit a hierarchy; large couplings arise on the stability wall and some suppressed interactions "grow back" off the wall, where the extended U(1) symmetries are spontaneously broken. A number of explicit examples are presented involving both one and two stability walls, with different decompositions of the bundle structure group. A three family standard-like model with no vector-like pairs is given as an example of a class of SU(4) bundles that has a naturally heavy third quark/lepton family. Finally, we present the complete set of Yukawa textures that can arise for any holomorphic bundle with one stability wall where the structure group breaks into two factors.Comment: 53 pages, 4 figures and 13 table

    A solution of the coincidence problem based on the recent galactic core black hole mass density increase

    Full text link
    A mechanism capable to provide a natural solution to two major cosmological problems, i.e. the cosmic acceleration and the coincidence problem, is proposed. A specific brane-bulk energy exchange mechanism produces a total dark pressure, arising when adding all normal to the brane negative pressures in the interior of galactic core black holes. This astrophysically produced negative dark pressure explains cosmic acceleration and why the dark energy today is of the same order to the matter density for a wide range of the involved parameters. An exciting result of the analysis is that the recent rise of the galactic core black hole mass density causes the recent passage from cosmic deceleration to acceleration. Finally, it is worth mentioning that this work corrects a wide spread fallacy among brane cosmologists, i.e. that escaping gravitons result to positive dark pressure.Comment: 14 pages, 3 figure

    Phenomenology of heterotic M-theory with five-branes

    Get PDF
    We analyze some phenomenological implications of heterotic M-theory with five-branes. Recent results for the effective 4-dimensional action are used to perform a systematic analysis of the parameter space, finding the restrictions that result from requiring the volume of the Calabi-Yau to remain positive. Then the different scales of the theory, namely, the 11-dimensional Planck mass, the compactification scale and the orbifold scale, are evaluated. The expressions for the soft supersymmetry-breaking terms are computed and discussed in detail for the whole parameter space. With this information we study the theoretical predictions for the supersymmetric contribution to the muon anomalous magnetic moment, using the recent experimental result as a constraint on the parameter space. We finally analyze the neutralino as a dark matter candidate in this construction. In particular, the neutralino-nucleon cross-section is computed and compared with the sensitivities explored by present dark matter detectors.Comment: Final version to appear in Phys. Rev. D. Some comments and references added. 37 pages, 19 figure

    Computer modeling of diabetes and Its transparency: a report on the Eighth Mount Hood Challenge

    Get PDF
    Objectives The Eighth Mount Hood Challenge (held in St. Gallen, Switzerland, in September 2016) evaluated the transparency of model input documentation from two published health economics studies and developed guidelines for improving transparency in the reporting of input data underlying model-based economic analyses in diabetes. Methods Participating modeling groups were asked to reproduce the results of two published studies using the input data described in those articles. Gaps in input data were filled with assumptions reported by the modeling groups. Goodness of fit between the results reported in the target studies and the groups’ replicated outputs was evaluated using the slope of linear regression line and the coefficient of determination (R2). After a general discussion of the results, a diabetes-specific checklist for the transparency of model input was developed. Results Seven groups participated in the transparency challenge. The reporting of key model input parameters in the two studies, including the baseline characteristics of simulated patients, treatment effect and treatment intensification threshold assumptions, treatment effect evolution, prediction of complications and costs data, was inadequately transparent (and often missing altogether). Not surprisingly, goodness of fit was better for the study that reported its input data with more transparency. To improve the transparency in diabetes modeling, the Diabetes Modeling Input Checklist listing the minimal input data required for reproducibility in most diabetes modeling applications was developed. Conclusions Transparency of diabetes model inputs is important to the reproducibility and credibility of simulation results. In the Eighth Mount Hood Challenge, the Diabetes Modeling Input Checklist was developed with the goal of improving the transparency of input data reporting and reproducibility of diabetes simulation model results

    EC07-1780 Lady Beetles of Nebraska

    Get PDF
    Extension Circular 07-1780 discusses lady beetles of Nebraska

    Simulating the dynamics of linear forests in Great Plains agroecosystems under changing climates

    Get PDF
    Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers), where such forests are a minor but ecologically important component of the land mosaics. This study used SEEDSCAPE, a recently modified gap model designed for cultivated land mosaics in the Great Plains, to simulate the effects of climate change on the dynamics of such linear forests. We simulated the dynamics of windbreaks with different initial planting species richness and widths flight changes as the selected resulting factor) using current climate data and nested regional circulation models (RegCMs). Results indicated that ( i ) it took 70-80 simulation years for the linear forests to reach a steady state under both normal (present-day) and warming climates; (ii) warming climates would reduce total aboveground tree biomass and the spatial variation in biomass, but increase dominance in the linear forests, especially in the upland forests; (iii) linear forests with higher planting species richness and smaller width produced higher aboveground tree biomass per unit area; and (iv) the same species performed very differently with different climate scenarios, initial planting diversity, and forest widths. Although the model still needs further improvements (e.g., the effects of understory species should be included), the model can serve as a useful tool in modeling the succession of linear forests in human-dominated land mosaics under changing climates and may also have significant practical implications in other systems

    Efficacy and consequences of very-high-protein diets for athletes and exercisers

    Get PDF
    Athletes and exercisers have utilised high-protein diets for centuries. The objective of this review is to examine the evidence for the efficacy and potential dangers of high-protein diets. One important factor to consider is the definition of a 'high-protein diet'. There are several ways to consider protein content of a diet. The composition of the diet can be determined as the absolute amount of the protein (or other nutrient of interest), the % of total energy (calories) as protein and the amount of protein ingested per kg of body weight. Many athletes consume very high amounts of protein. High-protein diets most often are associated with muscle hypertrophy and strength, but now also are advocated for weight loss and recovery from intense exercise or injuries. Prolonged intake of a large amount of protein has been associated with potential dangers, such as bone mineral loss and kidney damage. In otherwise healthy individuals, there is little evidence that high protein intake is dangerous. However, kidney damage may be an issue for individuals with already existing kidney dysfunction. Increased protein intake necessarily means that overall energy intake must increase or consumption of either carbohydrate or fat must decrease. In conclusion, high protein intake may be appropriate for some athletes, but there are potential negative consequences that must be carefully considered before adopting such a diet. In particular, care must be taken to ensure that there is sufficient intake of other nutrients to support the training load

    Genetic influences on the insulin response of the beta cell to different secretagogues

    Get PDF
    Aims/hypothesis: The aim of the present study was to estimate the heritability of the beta cell insulin response to glucose and to glucose combined with glucagon-like peptide-1 (GLP-1) or with GLP-1 plus arginine. Methods: This was a twin-family study that included 54 families from the Netherlands Twin Register. The participants were healthy twin pairs and their siblings of the same sex, aged 20 to 50 years. Insulin response of the beta cell was assessed by a modified hyperglycaemic clamp with additional GLP-1 and arginine. Insulin sensitivity index (ISI) was assessed by the euglycaemic-hyperinsulinaemic clamp. Multivariate structural equation modelling was used to obtain heritabilities and the genetic factors underlying individual differences in BMI, ISI and secretory responses of the beta cell. Results: The heritability of insulin levels in response to glucose was 52% and 77% for the first and second phase, respectively, 53% in response to glucose+GLP-1 and 80% in response to an additional arginine bolus. Insulin responses to the administration of glucose, glucose+GLP-1 and glucose+GLP-1+arginine were highly correlated (0.62<r<0.79). Heritability of BMI and ISI was 74% and 60% respectively. The genetic factors that influenced BMI and ISI explained about half of the heritability of insulin levels in response to the three secretagogues. The other half was due to genetic factors specific to the beta cell. Conclusions/interpretation: In healthy adults, genetic factors explain most of the individual differences in the secretory capacity of the beta cell. These genetic influences are partly independent from the genes that influence BMI and ISI. © 2009 Springer-Verlag

    ID, GPS Tracking, 24/7 Tag Link for CubeSats and Constellations: Flight Results

    Get PDF
    The tiny 40-gram EyeStar-Tag processor, GPS, and radio link will ID its satellite with GPS and critical status data within a minute after turn-on. The autonomous low power EyeStar Tag GPS (20mW for 3D lock) is now at TRL-9 based on the successful release and operation of the Spaceflight Inc. ring on the 1/24/2021 rideshare launch. The orbit (530 km polar) was projected using GPS seven element arrays to generate, on the fly, the future ephemeris predictions while monitoring critical fight systems. The Tag continues to transmit over the Globalstar network of satellites and ground stations the GPS elements and status with low latency of seconds, even if the primary satellite fails or stops. Whether dead or alive, orbital elements and TLEs for debris tracking, attitude, and ID are available to the 18th Squadron. AFWERX’s SBIR investment helped fast track the Black Box and Tag systems. Key enablers and new architecture are flight referenced for 30 ThinSat constellation launched in February 2021 NG-15. With the Globalstar constellation NSL can monitor a satellite 24/7 anywhere in LEO orbits with data available anytime, without the need for expensive ground stations. With a 100% success in orbit using the NSL EyeStar processor and Globalstar comm systems (110+ radios in space with several tumbling) can contribute to the commercial, educational, and research small satellite market that is rapidly growing. The EyeStar radio is ideal for the next step to advance many NASA, DOD, commercial, and STEM satellites now that appropriate FCC, NTIA, and ITU licenses have all been approved. The aircraft Black Box is well known and is essential for crash diagnostics after the fact, but in addition, the satellite Black Box and processor will operate in Telemetry Tracking and Command (TT&C) mode during the whole mission and will continue TT&C in orbit after a completed or failed mission. The Black Box transmits vital data, health and safety information, GPS, and summary data while in orbit for 24/7 coverage. With its included solar arrays, the Black Box would operate for many years after the primary satellite fails so that essential data and tracking is continuous, and altitude known. If the satellite reawakens after some long failure, the Black Box reports the new status, and the satellite may be reactivated. NSL customers have experienced this wake-up mode after a year on one of our Black Box/EyeStar communication processors after an unexpected two-month “dead” phase and wake. The “dead” satellite was reactivated
    corecore