1,408 research outputs found
Perturbation Approach to the Self Energy of non-S Hydrogenic States
We present results on the self-energy correction to the energy levels of
hydrogen and hydrogenlike ions. The self energy represents the largest QED
correction to the relativistic (Dirac-Coulomb) energy of a bound electron. We
focus on the perturbation expansion of the self energy of non-S states, and
provide estimates of the so-called A60 perturbative coefficient, which can be
considered as a relativistic Bethe logarithm. Precise values of A60 are given
for many P, D, F and G states, while estimates are given for other electronic
states. These results can be used in high-precision spectroscopy experiments in
hydrogen and hydrogenlike ions. They yield the best available estimate of the
self-energy correction of many atomic states.Comment: 18 pages (in 2-column format), 21 figures. Version 2 (June 20, 2003)
includes minor modification
Theoretical light curves of dipole oscillations in roAp stars
Context.
The dipole modes are the most common geometry of oscillations in roAp stars inferred from photometric measurements and are therefore of special interest for asteroseismic purposes.
Aims.
We present a theoretical and analytical study of the light curves associated with dipole (â„“ = 1) pulsations of roAp stars in the framework of the revisited oblique pulsator model.
Methods.
We describe the light curves in terms of the inclination and polarization of the elliptical displacement vector of the dipole modes. We study the influence of the magnetic field and rotation on the shape of these light curves for both amplitudes and phases.
Results.
Despite the inclination of dipole mode with respect to the magnetic axis, we find that the dipole mode can have maxima that are in phase with the magnetic maxima. We apply our formalism to the well-known roAp star HR 3831 (HD 83368) to derive its mode properties. Our results are similar to those obtained by time-series spectroscopy. We also consider the cases of three other roAp stars, HD 6532, HD 99563, and HD 128898 (α Cir).
Conclusions.
We demonstrate that the formalism of the revisited oblique pulsator model is adequate to explain the properties of the photometric light curves associated with dipole modes in roAp stars. In addition, we show that the coincidence of pulsation and magnetic extrema can also occur for inclined modes with respect to the magnetic axis. With the stars considered in this paper, we conclude that the polarization of the modes present in roAp stars are quasi linearly polarized
Asteroseismic Theory of Rapidly Oscillating Ap Stars
This paper reviews some of the important advances made over the last decade
concerning theory of roAp stars.Comment: 9 pages, 5 figure
Stellar Limb-Darkening Coefficients for CoRot and Kepler
Transiting exoplanets provide unparalleled access to the fundamental
parameters of both extrasolar planets and their host stars. We present
limb-darkening coefficients (LDCs) for the exoplanet hunting CoRot and Kepler
missions. The LDCs are calculated with ATLAS stellar atmospheric model grids
and span a wide range of Teff, log g, and metallically [M/H]. Both CoRot and
Kepler contain wide, nonstandard response functions, and are producing a large
inventory of high-quality transiting lightcurves, sensitive to stellar limb
darkening. Comparing the stellar model limb darkening to results from the first
seven CoRot planets, we find better fits are found when two model intensities
at the limb are excluded in the coefficient calculations. This calculation
method can help to avoid a major deficiency present at the limbs of the 1D
stellar models.Comment: Accepted for publication in A&A. 4 pages, 2 figures, 2 tables. Full
versions of tables 1 and 2 containing limb-darkening coefficients available
at http://vega.lpl.arizona.edu/~sing
Toward high-precision values of the self energy of non-S states in hydrogen and hydrogen-like ions
The method and status of a study to provide numerical, high-precision values
of the self-energy level shift in hydrogen and hydrogen-like ions is described.
Graphs of the self energy in hydrogen-like ions with nuclear charge number
between 20 and 110 are given for a large number of states. The self-energy is
the largest contribution of Quantum Electrodynamics (QED) to the energy levels
of these atomic systems. These results greatly expand the number of levels for
which the self energy is known with a controlled and high precision.
Applications include the adjustment of the Rydberg constant and atomic
calculations that take into account QED effects.Comment: Minor changes since previous versio
Ancestral genome estimation reveals the history of ecological diversification in Agrobacterium
Horizontal gene transfer (HGT) is considered as a major source of innovation in bacteria, and as such is expected to drive adaptation to new ecological niches. However, among the many genes acquired through HGT along the diversification history of genomes, only a fraction may have actively contributed to sustained ecological adaptation. We used a phylogenetic approach accounting for the transfer of genes (or groups of genes) to estimate the history of genomes in Agrobacterium biovar 1, a diverse group of soil and plant-dwelling bacterial species. We identified clade-specific blocks of cotransferred genes encoding coherent biochemical pathways that may have contributed to the evolutionary success of key Agrobacterium clades. This pattern of gene coevolution rejects a neutral model of transfer, in which neighboring genes would be transferred independently of their function and rather suggests purifying selection on collectively coded acquired pathways. The acquisition of these synapomorphic blocks of cofunctioning genes probably drove the ecological diversification of Agrobacterium and defined features of ancestral ecological niches, which consistently hint at a strong selective role of host plant rhizospheres
New measurements of magnetic fields of roAp stars with FORS1 at the VLT
Magnetic fields play a key role in the pulsations of rapidly oscillating Ap
(roAp) stars since they are a necessary ingredient of all pulsation excitation
mechanisms proposed so far. This implies that the proper understanding of the
seismological behaviour of the roAp stars requires knowledge of their magnetic
fields. However, the magnetic fields of the roAp stars are not well studied.
Here we present new results of measurements of the mean longitudinal field of
14 roAp stars obtained from low resolution spectropolarimetry with FORS1 at the
VLT.Comment: 5 pages, accepted for publication in A&
A large sample of calibration stars for Gaia: log g from Kepler and CoRoT
Asteroseismic data can be used to determine surface gravities with precisions
of < 0.05 dex by using the global seismic quantities Deltanu and nu_max along
with Teff and [Fe/H]. Surface gravity is also one of the four stellar
properties to be derived by automatic analyses for 1 billion stars from Gaia
data (workpackage GSP_Phot). We explore seismic data from MS F, G, K stars
(solar-like stars) observed by Kepler as a potential calibration source for
methods that Gaia will use for object characterisation (log g). We calculate
log g for bright nearby stars for which radii and masses are known, and using
their global seismic quantities in a grid-based method, we determine an
asteroseismic log g to within 0.01 dex of the direct calculation, thus
validating the accuracy of our method. We find that errors in Teff and mainly
[Fe/H] can cause systematic errors of 0.02 dex. We then apply our method to a
list of 40 stars to deliver precise values of surface gravity, i.e. sigma <
0.02 dex, and we find agreement with recent literature values. Finally, we
explore the precision we expect in a sample of 400+ Kepler stars which have
their global seismic quantities measured. We find a mean uncertainty
(precision) on the order of <0.02 dex in log g over the full explored range 3.8
< log g < 4.6, with the mean value varying only with stellar magnitude (0.01 -
0.02 dex). We study sources of systematic errors in log g and find possible
biases on the order of 0.04 dex, independent of log g and magnitude, which
accounts for errors in the Teff and [Fe/H] measurements, as well as from using
a different grid-based method. We conclude that Kepler stars provide a wealth
of reliable information that can help to calibrate methods that Gaia will use,
in particular, for source characterisation with GSP_Phot where excellent
precision (small uncertainties) and accuracy in log g is obtained from seismic
data.Comment: Accepted MNRAS, 15 pages (10 figures and 3 tables), v2=some rewording
of two sentence
Relativistic and Radiative Energy Shifts for Rydberg States
We investigate relativistic and quantum electrodynamic effects for
highly-excited bound states in hydrogenlike systems (Rydberg states). In
particular, hydrogenic one-loop Bethe logarithms are calculated for all
circular states (l = n-1) in the range 20 <= n <= 60 and successfully compared
to an existing asymptotic expansion for large principal quantum number n. We
provide accurate expansions of the Bethe logarithm for large values of n, for
S, P and circular Rydberg states. These three expansions are expected to give
any Bethe logarithms for principal quantum number n > 20 to an accuracy of five
to seven decimal digits, within the specified manifolds of atomic states.
Within the numerical accuracy, the results constitute unified, general formulas
for quantum electrodynamic corrections whose validity is not restricted to a
single atomic state. The results are relevant for accurate predictions of
radiative shifts of Rydberg states and for the description of the recently
investigated laser-dressed Lamb shift, which is observable in a strong
coherent-wave light field.Comment: 8 pages; RevTeX
- …