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PHYSICAL REVIEW A 68, 042101 (2003

Perturbation approach to the self-energy of nonS hydrogenic states
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!Laboratoire Kastler Brossel, &le Normale Supeure et UniversitePierre et Marie Curie, Case 74, 75005 Paris, France
National Institute of Standards and Technology, Mail Stop 8401, Gaithersburg, Maryland 20899-8401, USA
SInstitut fir Theoretische Physik, Technische UniversBaesden, 01062 Dresden, Germany
(Received 8 April 2003; published 3 October 2003

We present results on the self-energy correction to the energy levels of hydrogen and hydrogenlike ions. The
self-energy represents the largest QED correction to the relatiyiBiiac-Coulomb energy of a bound elec-
tron. We focus on the perturbation expansion of the self-energy ofSwtates, and provide estimates of the
so-calledAg, perturbation coefficient, which can be viewed as a relativistic Bethe logarithm. Precise values of
Ago are given for manyP, D, F, andG states, while estimates are given for other states. These results can be
used in high-precision spectroscopy experiments in hydrogen and hydrogenlike ions. They vyield the best
available estimate of the self-energy correction of many atomic states.

DOI: 10.1103/PhysRevA.68.042101 PACS nuntder12.20.Ds, 31.30.Jv, 06.20.Jr, 31.1p.

[. INTRODUCTION the logarithm[see Sec. II, and in particular Eq4), (7), and
(8)]. Here,nl; is the standard spectroscopic notation for an
The recent dramatic progress in high-precision spectrosatomic state. This paper thus contains numerical values of
copy (see, e.g., Ref[1]) has motivated the calculation of Ao, as Well as formulas for estimating both of these impor-
numerous contributions to the energy levels of hydrogen anégnt quantities for high (see Secs. V and VI _
hydrogenlike systems. Such spectroscopic experiments test Very precise numerical values of the Bethe logarithm
our understanding of atomic levels and provide precise del ko(nl) have been obtainetsee, e.g., Refd5,6]), and nu-
terminations of fundamental constafigg; this requires ac- Merical convergence acceleration technigligscan yield
curate predictions of atomic energies and, in particular, th¥€"Y Precise values of this quantity for any atomic stake
calculation of corrections due to quantum electrodynamics N€ €stimaté3?) that we obtained as a by-product in Sec. VI

. C hould be useful to experiments that use Highvels for
(QED), the quantum field theory of electromagnetic interac->19 ; . .
tions. The largest correction to the relativistigirac) energy \évg'ChRg?[%l]J)bI'Shed values of the Bethe logarithm eisete,
levels of hydrogen and hydrogenlike ions is provided by the Many new values of the relativistic Bethe logarithm

so-calledseli-energycontribution of QED. The self-energy is Ago(nl;) have recently been publishggl. Other values have
a process which madifies the relativistl@irac) energy of an been (J)btained previously for son®[10—12 and P states
electron, and can be depicted by the following Feynman dia[13,14]_ This paper contains two additional values
gram. [Aso(5F5) andAgy(5F7,)], as well as details of the proce-
dure that we used in obtaining the valuesAgf in Ref.[9]
i : and in Table lli(see Sec. V.
) The results of Secs. IV-VI provide an improvement over
the available approximations of the bound-electron self-
where the double line denotes the electitwound to the energy, over a large range of nuclear charge numBeta
nucleus and the wavy line represents the photon emitted angbarticular, they yield the best available estimates for the self-
reabsorbed by the electron. The self-energy correction to erenergy correction in hydrogen, for all the states for which no
ergy levels in hydrogen and hydrogenlike ions can be exexact(nonperturbativevalue of the self-energy has yet been
pressed as an expansionZw and In€a) (see, e.g., Ref. published (i.e., all levels, excepin=1 and n=2 levels
[3]), whereZ is the nuclear charge number of the nucleus o0f{12,15).
the hydrogenlike ion under consideration a@ds the fine- It is important to know accurately the ener@nd in par-
structure constant. Analytic calculations of tkene-loop ticular the self-energyof higher angular-momentum states,
self-energy in bound systems have a long history, startindpecause they are used in high-precision spectroscopic mea-
from Bethe's seminal papdd], and have since extended surements16-—21]. States with very high angular orbital
over more than five decades. guantum number$=30 have been recently used in such
The purpose of this paper is to provide good approximatexperimentg8]. Further motivation for the present study re-
values of the self-energy correction to the energy levels ofults from the need to accurately compare the two ap-
hydrogen and hydrogenlike ions for aRystate and any state proaches that have been used for the theoretical study of
with a higher angular momentum. Only a part of the pertur-QED shifts, so as to check their consisten@ythe analytic
bation expansion of the self-energy of these states is knowaxpansion in the paramet&w, mostly used for lowZ sys-
analytically. The first two contributions to this expansion thattems, andii) the numerical approach which avoids the
are not known in closed analytic form are the Bethe logaexpansion and has been used predominantly for the theoret-
rithm Inky(nl) and the so-called\go(nl;) coefficient of the ical description of highz hydrogenlike iong22].
self-energy, which can be characterized alativistic Be- Recently, the most accurate methods implementing a non-
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TABLE |. Self-energy coefficienAg, for P stateqdsee Eq(7)]. TABLE lll. Agq coefficients forF states.
The quoted error is due to numerical integration. As in previous
calculations(see Refs[13,14)), certain remaining one-dimensional  n Fso (k=3) Fio(k=—4)

integrals involving(partial derivatives gfhypergeometric functions

could only be evaluated numerically. 0.002 326 988(1) 0.007 074 961(1)
5 0.002 403 158(1) 0.008 087 020(1)
n Pip (k=1) Pap (k=—2)
2 —0.998 904 402(1) —0.503373465(1) II. NOTATION AND CONVENTIONS
3 —1.148 189 956(1) —0.597 569 388(1) . . . . _
In this section, we define the notation and conventions
g :i;iz ggi ;ig(i) :8'233 2‘112 ;g:(i) used in this paper. We write theeal part of the one-loop
‘ (1) ' (1) self-energy shift of an electron in the levelwith orbital
6 —1.226 702 391(1) —0.656 154 893(1) angular momenturh and total angular momentujras
7 —1.232715957(1) —0.662 027 568(1)
a (Za)*
, , AEgg=— ——F(nl;,Za)m¢?, (1)
perturbative calculation of the self-enerfi5,23—26 have ™ nd

been extended by analytic resul&7]. Taken together, they
provide access to the self-energy shift of electrons of totawhereF(nl;,Z«) is a dimensionless quantity. We use natu-
angular momentunj>3/2. This has allowed us to obtain ral units, in whichi=c=m=1 (m is the electron magslt
numerical values of the self-energy, and to use them ins customary in the literature to suppress the dependeriee of
checksof the Agq coefficients presented in Tables |-Igee  on the quantum numbens, j, and| and write F(Z«) for
Sec. VI). F(nlj,Za).

Moreover, general progress in theoretical calculations of The quantum numbersandj can be combined into the
atomic energy levels has been achieved by means of numeiBirac angular guantum numbet As a function off andl,
cal algorithmg[7,26,29 that lead to an accelerated conver- is given by
gence of the angular-momentum series expansion of the
bound-electron relativistic Green function. Such algorithms k=2(1=])(j+1/2), (23
are also useful for performing the series summations that we
had to do in order to obtain the values/A, presented here '-€-
(see Sec. V.

Notation and conventions are defined in Sec. Il. The k=—(j+1/2) for j=I+1/2 (2b)
mathematical method used for the semianalytic calculation
of Agp in Ref. [9] is discussed in Sec. lll. Details of these
calculations forP, D, F, andG states are presented in Sec. IV k=(j+1/2) for j=I-1/2. (20
(numerical results are presented in Tables I-IXpproxi-
mate formulas for the relativistic Bethe logarithigy(nl;) The quantum numberg and | can be derived fromk

of P andD states with higm are presented in Sec. V. Esti- according to

mates of the Bethe logarithm kg(nl) and of Agy(nl;) as a

function of the orbital quantum numbkare reported in Sec. I=|k+1/2—1/2 3)
VI. We have performed additional checks of the values of

Agoin Tables I-IV, as described in Sec. VII; we also show inand

this section that for the states considered here, the inclusion _

of Agg in the (truncatedl perturbation expansion of the elec- j=|x|=1/2, (4)
tron self-energy{Eq. (7) below] does indeed improve the . . ) ) i
self-energy estimates. A summary of the paper is given i€ ¥ specifies uniquely bothandl. The semianalytic ex-
Sec. VIII. The fiting method that we used in obtaining Pansion ofF(nlj,Za) aboutZa=0 for a general atomic
asymptotic behaviors of liy(nl) and of Ag(nl;) is described ~ State with quantum numbers, |, andj gives rise to the

in the Appendix. expressior3]

TABLE II. Agq coefficients forD states. F(nl; ,Za)=A41(nlj)In[(Za)_2]+A4o(an)
n Da, (k=2) D)y (k=—3) +(Za)Asg(nl)) +(Za) 4 AgAnl))IN’[ (Za) 2]
3 0.005 551 573(1) 0.027 609 989(1) +Aa(nPIN[(Za) 2]+ Ggenl} , Za)}.  (5)
4 0.005 585 985(1) 0.031411862(1) .
5 0.006 152 175(1) 0.033077 570(1) TABLE V. Ag, coefficients forG states.
6 0.006 749 745(1) 0.033 908 493(1)

G (k=4 Gop (k=—5

7 0.007 277 403(1) 0.034355926(1) w2 (k=4) o2 (k=—5)
8 0.007 723 850(1) 0.034607492(1) 5 0.000 814 415(1) 0.002 412 929(1)
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This expansion is semianalytic, i.e., it involves powerZaf  quantum numbersn(l), with associated bound-state energy
and of Irf(Za) ?]. Terms added to the leading order Ziar En=—(Za)?m/(2n?). The Bethe logarithm is spin indepen-
are commonly referred to as the binding corrections. Thalent and therefore independent of the total angular momen-
coefficientsA have two indices, the first of which denotes thetum j for a given orbital angular momentum it can be
power ofZa [including those powers contained in Ed)],  written as a function of andl alone[factors ofZ cancel out
while the second index denotes the power of the logarithnin Eqg. (9), so that the Bethe logarithm does not depend on

In(Za) 2. Z]. For the atomic levels under investigation here, the Bethe
The limit asZa—0 of Ggg(nlj,Za) is known to be finite  logarithm has been evaluated in ReffS,6,35—-42 (the re-
and is referred to as thig, coefficient, i.e., sults exhibit varying accuraciesBecauseig involves rela-
] tivistic corrections to the coefficiem®t,q, which in turn con-
AGanJ):ZI'mOGSE(mJ Za). (6)  tains the Bethe logarithm, it is natural to refer Ag, as a

“relativistic Bethe logarithm.”

Historically, the evaluation of the coefficiertty, has been A general gnalytic result for the logarithmic correction
highly problematic. Due to the large number of terms that"61 as a funcpon of the bound-state quantum numises
contribute at relative orderZ@)? in Eq. (5) and problems andj can be inferred from Eq4.43 of Refs.[3,29 upon
concerning the separation of terms that contribute to a Spes_qbtrac_tlon of the vacuum—polanzatlon coniribution con-
cific order in theZa expansion, evaluations are plagued with {&ined in the quoted equation. We have

severe calculational as well as conceptual difficulties. For

example, the evaluation ofgy(1S;,) has drawn a lot of 8(1- 5, o)(3— Id+1)

attention for a long tim¢3,11,29-31 In general, the com- ' n?

plexity of the calculation increases with increasing principal Aei(nlj) =3 3

quantum numben. IT @2r+m)
For many states, some of the coefficients in Ex).van- m=-1

ish. Notably, this is the case fét states and for states with
higher angular momenta, as a consequence of their behavior
at the nucleus, which is less singular than thatSoftates
[specifically, we havedgy(nlj)=Asg(nl;) =Ay(nlj)=0 for

+0,

1 1
1- = o 72911112

| #0; see Refs[3,29 and references therdinThe fact that 601 77
the logarithmic  coefficient Az (nl;) contained in +di, _2_40_60n2+7|n2
Gsg(nlj,Za) in Eq. (5) vanishes foll #0 has been pointed
out in Ref.[32]; it is therefore expected that, (nlj)=0 for
k>1. For nonzerd, we thus have
F(nlj,Za)=Agnlj)+(Za)Ag(nljIn(Za) 2 +3[y=Inn+¥(n+1)] (10)

+Ag(Nl)]+0(Ze)®) (1#0). (7)

For the comparison to experimental data, it is useful to notedere, ' denotes the logarithmic derivative of thiefunction
that the terms in Eqg5) and(7) acquire reduced-mass cor- [43] (Sec. 6.3andy is Euler’s constari43] (Sec. 6.1.3 We
rections according to Eq$2.53 and(2.5b of Ref.[33]. may infer immediately

The general formula foA,, for a nonsS state readssee,

e.g., Refs[2,3,33) 1 29
Ae1(NP1p) = 72| 33—, (113
4 n
A4o(n|j):—m—§|nko(n|), 8 , ,
where the Bethe logarithm lg(nl) is an inherently nonrela- Asi(NP32) = 4_5( g_ﬁ) : (11b)
tivistic quantity, whose expression red@l] (Sec. 19
) I(1+1
n? p' 39 3— ( )
Inko(nl)= ————{ ¢| —(Hs—E,) n?
2(Za)"m m Ag(nl) = —5—— (1=2). (110
win| 21 Enl [P L (9) m="1
(Za)?m | M

For a given orbital angular momentumthe coefficientAg,
Here, Hg is the nonrelativistic Coulomb Hamiltonian approaches a constantas»cc. Equation(110 implies that
p?/(2m)—(Za)/r, p' are the components of the momentum Ag; is spin independent fd=2, i.e., forD, F, G, . . . states.
operator { is summed over from 1 to)3and the ket ¢) Therefore,Ag; does not contribute to the fine structure of
represents the Schiinger wave function of a state with these states.

042101-3
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. THE € METHOD Within the e method, we start by dividing the calculation
é)f J(Za) into a high-energy patdy(Za,€) and a low-energy

. i . _partJ (Za,€), each of which depends on an additional pa-
e method[11,13,14 in bound-state calculations of QED cor rametere [that satisfies Eq12)]. The sum of the high- and

rections. It is known that relativistic corrections to the wave, . nerav contributions. which is
function and higher-order terms in the expansion of the 9y '
bound-electron propagator in powers of Coulomb vertices JZa)=3y(Za,e)+ I (Za,€), (15)
generate QED corrections of higher orderZm (see, e.g.,
Ref.[44] and references thergirthese terms manifest them- does not depend oe. Thus, the dependence eanshould
selves in Eq(5) in the form of the functionGgg(nl;,Za), vanish entirely when we add the high- and low-energy con-
which summarizes these effects at the order oftributions. We may therefore expand both contributidps
a(Za)®m—see Egs(1) and (5). It is also well known that andJ, firstin Ze, then ine, and then add them up at the end
for very soft virtual photons, the potential expansion failsof the calculation in order to obtain the semianalytic expan-
and generates an infrared divergence, which is cut off by theion of J(Z«) in powers ofZa and Inla).
atomic momentum scal&a (see, e.g., Ref.44] and refer- Let us first discuss the “high-energy part” of the calcula-
ences therein This cutoff for theinfrared divergence is one tion. It is given by the expression
of the mechanisms that lead to the logarithmic terms in Eq.
(5). 1(Za)’~w 1

The e method is used for the separation of the two differ- In(Za,e)= e (Za)2+ md“" (16)
ent energy scales for virtual photons: the nonrelativistic do-
main, in which the virtual photon assumes values of the orwhere it is important to note in particular the lower integra-
der of the atomic binding energy, and the relativistic domainyjon limit (€). For w> ¢, we may expand
in which the virtual photon assumes values of the order of
the electron rest mass. We consider here a model problem (Za)’— o 2(Za)?
with one “virtual photon,” which involves the separation of =
the function being integrated into a high- and a low-energy
contribution. This requires the temporary introduction of a
parametere; the dependence oa will cancel at the end of
calculation[see Eq(22) below] when the high- and the low-

In this section, we illustrate the usefulness of the so-calle

+0((Za)") 17

(Za)’+ o ‘U

[see Eq.(12) with m=1]. Each corresponding term of Eq.
(16) can be integrated, with result

energy parts are added together. We have T 2
Iy(Za,e)= —te +2(Za)? In(— +..-
nonrelativistic domairg e<electron rest mass, €
+0((Za)%, (18

i.e.,(Za)’m<e<m. (12
) ) ) . ) where the ellipsis represents terms that vanish-a®. It is
The high-energy part is associated with photon energies g fiient to only include terms that do not vanishes 0,
>, and the low-energy part is associated with photon enerey oach order iz, because the suin Eqg. (15) does not
giesw<e. depend one. Moreover, this makes the calculation more

In order to illustrate the principles behind teemethod, i anageable. The full cancellation of the dependence en In
we discuss a simple, one-dimensional example: the evalugg pe explicit after we evaluate the “low-energy part.”

fionsol The contribution of the low-energy part {0w <€) reads
(Za)’-w 1 (Za)?— 1
IZa)= do, (13) _[Za)~w
O(Za)2+w 1_(1)2 JL(ZO{,G) O(Za)2+w mdw, (19)

where the integration variable may be interpreted as the \yhere the upper limit of integration depends enFor w

“energy” of a virtual photon. The integral can be explicitly ¢ e use an expansion that avoids the infrared diver-
calculated, so that the perturbation expansion can b@ences that we encountered in E4j7):

checked:

1 ! 1+ o +3 44 (20)
=1+ —+—w*+- -,
2(Za)?In Z )2(\/1—(Za)4+ 1) 1-w 2 8
a 03
IZa)=- §+ 1-(Za)® ' which leads to &« expansion of the low-energy part. We

(14) obtain forJ, :

For|Za|<1, this formula is uniquely defined; for other val-

— 2
ues ofZa, the analytic continuations of the logarithm and of I(Za.e)=(--)+2(Ze)" In (Za)? e
the square root have to be performed consistently with the _
original definition(13). +0((Za)%n(Za)), (21)

042101-4
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where the ellipsis again represents terms that vanisk as dQ, dQ, STl
—0, and wherg is some integer. f 2 nas J 27 6m

When the high-energy paf(i8) and the low-energy part 4 m
(21) are added, the logarithmic divergencesinancel, as it

—ik-r
should, and we have X

g

. 1 .
¢ p|e|k~r pje
HS_(E_C())

JZa)=dy(Za,€)+ I (Za,€) < ‘ i 1 j H
— _— , 23
=— §+2(za)2(|n[(za)*2]+ In2)
. where the transversé function is given by
+0((Za)IN(Za)) (22
o KK
(for somej), which is consistent with Eq14). We note the shil= ¢l e

analogy of the above expression with the leading-order terms
of theZa expansion of the functiok(nl;,Z«) given in Eq. _ ) ) )
(7) for 1#0 (terms associated to the coefficiertsy, Ag;, ~ The dipole interaction obtained by the replacement
andAgg). In an actual Lamb shift calculation, the simplifica- _

tions observed between terms containiegare crucial expik-r)—1

[13,14.

In this model example, the epsilon method allowed us tds subtracted; it leads to a lower-order contribution. The next
obtain Eq.(22) with minimal effort. For comparison, the term in the Taylor expansion of the exponential reads
reader may consider Appendix A of R¢#5], which illus-
trates the cancellation efin higher orders of th&« expan- dQ, s"i
sion, using a different example. a7 eml\? ¢

-\ ¢ p‘—l p(k-r)? (24)
Hs—(E-w) '

) 1 )
p(k-r)mpJ(k-r)

g

Ell'his representation makes an evaluation in coordinate space
ossible. However, an evaluation of this expression leads to a
ather involved angular-momentum algebra. Specifically, we

employ a well-known angular-momentum decomposition of

the coordinate-space hydrogen Green funcfiés

IV. CALCULATION OF SELF-ENERGY COEFFICIENTS

This section, along with the preceding one, gives details
of the methods we used in order to obtain the values of th
Ago coefficient in Tables I1-I\(see also Ref[9]). The pur-
pose of our calculations is to provide data for the self-energ
coefficients up to and including the relative ordgi()? [see
Eq. (7)]; for the states of interest hel@on-S state$ this
corresponds to the coefficiems, Ag;, andAgy. Equation
(8) is the well-known general formula for the coefficient
A,o. The coefficientAg; can be found in Eq(10), with spe- )= , L (POYE (F
cial cases treated in Eq§l1a—(110. The remaining non- Grrz E-o) |r2m 9 (rar2 ) Yir (1Y (12,
logarithmic termAgq is by far the most difficult to evaluate, (25
and the first results for any state with orbital angular-
momentum quantum numbékr 2 were recently obtained in  with E— o= — a?m/(2v?) and[47]

Ref.[9] by using the methods described in this section.

As explained in detail in Ref§11,13,14, the calculation am{2r,\""(2r,\"
of the one-loop self-energy falls naturally into a high- and a g (ry,ry,v)=—»I|—| |=—| e (tra/(a
. av\ av av
low-energy part Fy andF, respectively. In Sec. lll, we
illustrated this procedure and the introduction of the scale- 2r 2r
- . 21'+1) S 21r+1[ 222
separation parameter for the photon energy. According to Li av L

Ref. [13] [Egs. (39—(43)], the contributions to the low- ,

energy part can be separated naturally into the nonrelativistic k=0 (k+1)gr42(I"+1+k=7)

dipole and the nonrelativistic quadrupole parts, and into rela-

tivistic corrections to the current, to the Hamiltonian, to thewherea=1/(Zam), (k). is the Pochhammer symbol, ahd

binding energy, and to the wave function of the bound statedenotes associated Laguerre polynom[di3]. For a refer-

We follow here the approach outlined in Reff$3,14], with  ence staté¢) of orbital angular momenturh) we obtain in

some modifications. Eq. (24) nonzero contributions from Green-function compo-
One main difference as compared to the evaluatioments(25) with |'=1—-2]—-1],I+1]+2. They can be ob-

scheme described previously concerns the nonrelativistimined by a straightforward, but tedious, application of

quadrupolgnq) part. It is given by a specific matrix element angular-momentum algebfaee, e.g., Ref48]).

[see the definition oP,, in Ref.[13] Eq. (39)], which has to As in previous calculationgsee also Refl13] [Egs.(18)

be evaluated for each atomic state and averaged over tlend(19)] and[14] [Egs.(55)—(58)]], we obtain for the high-

angles of the photon wave vectors: energy part of all atomic states the general structure

(26)

042101-5
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[51,52. As a result of the summation ovét in Eg. (25),
Fu(nlj,Za)=— m*‘(Za)2 after performing radial integrals, two specific hypergeomet-
ric functions enter naturally into the expressions for the
C bound-state matrix elements that characterize the one-loop
XK= ——Aeln(2e)+O(e) | +-- -, correction[see, e.g., Eq€80) and(81) of Ref.[14]]. One of
these functions is given by
(27)

where K is a constant and the ellipsis denotes higher-order q)l(nut):2F1< 1,—nt,1—nt,<m
terms[in Za and In¢€a)]. As observed in Sec. lll, we may

suppress terms that vanish in the lireit-O [terms of the  where the integration variableis in the range 0—1 and is
form O(e) in the (Ze)? term in Eq.(27) abovd. These the bound-state principal quantum numbef { denotes the
terms cancel when the high- and low-energy parts are addeflypergeometric function—see, e.g., Chap. 15 in R&8]).

Together with the constant termAg;In 2, the constant For t=0, the power-series expansion @f, is slowly con-
contributes tdAg. C is the coefficient of the ¥ divergence; vergent,
the term— (/e cancels when the high- and low-energy parts

2

: (30

are added. BotliC and(C are state dependent and vary with 1-t 2
n,j,l. As in Refs.[13] [Egs. (56) and (57)] and[14] [Egs. Zol1+t
(89)—(92)], the low-energy part, for all states under investi- (I)l(n’t):(nt)kgo ik (31)

gation, has the general structure
The series is nonalternating. In order to accelerate the con-

EF. (nl Za)=— f| ka(nl vergence in the range= (0,0.05), we employ the combined
L(nlj,Za) nko(nl) . . :

3 nonlinear-condensation transformatioh28|. The other hy-

pergeometric function that occurs naturally in our calcula-
2 ¢ € tions is
+(Za)?| L+ —+AgIn| —— | +0O(e)
€ (Za)? -
+ ... , (28) (I)Z(nat):ZFl( 11_nt11_nt1_ m) . (32)

where Inky(nl) is the Bethe logarithnisee Eq.(9)] and the  For 0<t<0.05, we accelerate the convergence of the alter-
ellipsis denotes higher-order terms. The cancellation of th@ating power series
divergence ine between Eqgs(27) and(28) is obvious. The

constantC, which is state dependefa function ofn,j,l), (_ E “
represents the low-energy contribution Ag, and can be - 1+t
interpreted as the relativistic generalization of the Bethe d)z(n,t):(nt)gow (33
logarithm. In terms of the general expressi¢ag) and(28),
Ago is therefore given by via the § transformatior{53] [Eq. (8.4-4)]. The convergence
acceleration leads to a much more reliable evaluation of the
Ago=K—AgIn2+ L. (29 remaining numerical integrals which contribute Ag, (but

, - , cannot be expressed in closed analytic fpriAs a by-
Our improved results foAg, coefficients rely essentially ON hroduct of our investigations, we obtained through s

a more general code for the analytic calculations, wr_itten INependent method Bethe logarithms which are consistent
the computer-algebra packageTHEMATICA [49,50, which it the precise results of Ref5]. Here, we restrict the
enables the corrections to be evaluated :sem|automat|callygl.ccuracy to 24 figures and give results Pstates:

Intermediate expressions with some 200000 terms are en-
countered, and the complexity of the calculations sharply Inky(2P)=—0.030016 708 630212902 443 §16,
increases with the principal quantum numbeand, as far as
the complexity of the angular-momentum algebra is con- Inko(3P)=—0.038190229 385312447 701 183,
cerned, with the orbital angular quantum number of the
bound electron.

Of crucial importance was the development of conver- Inky(5P) = —0.044 034 695 591 877 795 070 318.
gence acceleration methods which were used extensively for (34)
the evaluation of remaining one-dimensional integrals, which
could not be done analytically. These integrals are analogoubhese results, which test the numerical methods that we em-
to expressions encountered in previous wiake Eqs(36), ployed, are in agreement with other recent calculations
(47), and(48) of Ref.[13] and Eqs(80)—(84) of Ref.[14]].  [5,6,41,42.
The numerically evaluated contributions involve slowly con-  The main results of this paper concerning thg coeffi-
vergent hypergeometric series and, in more extreme casesients are given in Tables |I-1V, with an absolute precision of
infinite series over partial derivatives of hypergeometric10™°. In addition, we give explicit expressions for the low-
functions, and generalizations of Lerch® transcendent and high-energy parts of the self-energy, for the states with

Inky(4P)=—0.041954 894 598 085 548 671 037,
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TABLE V. According to Egs(27) and(28), the high- and low- TABLE VI. As explained in Refs[13,14], the low-energy con-
energy parts can be cast into a general form involving the t€kms tributions to Agq naturally separate into the following terms: the
K, andL. The coefficientAgy can be expressed in terms/of Ag,, nonrelativistic quadrupole paR,, [13] [Eq. (39)], the relativistic

and £ according to Eq(29). Here, we present analytic results for corrections to the currerft 5, [13], [Eq. (40)], relativistic correc-
the termsC, Ag;, and K, and numerical results fof (for states tions to the HamiltoniarF s, [13] [Eq. (41)], and relativistic cor-

with n=5). The results forAg; can be inferred from Eqg10)— rections to the bound-state enerfye [13] [EqQ. (42)] and to the
(119. Fori=2, we observe thahg, are spin independent and that wave functionF s, [13] [Eq. (43)]. This classification suggests that
C=Ag;. it is natural to refer to the low-energy contributidnas a relativistic
Bethe logarithm. The total contribution g, of the low-energy
C, K, and L coefficients for states with=5 part, which reads 0.001 834 827, is roughly five times smaller
State C Ag1 K L than the largest individual contributigfrom F,), due to cancel-
292 796 20129 lations.
5Py 1135 1125 57560 —1.023991781(1)
5Py s 1im 520000 —0.747615653(1) Contributions to the low-energy part Gg,,)
5D S22 g2 359 0.023 759 683(1
o P Soar° 0.021 511 7985 1; Ago contribution due tcF 0.002 875 83®(5)
N 1 e 0.006045307(1) Ao contribution due tc, —0.001 083 109 (5)
512 1125 1125 1102500 ' Ago contribution due td gy —0.008917 784(5)
5F o 1o rrdlal 0.005 662 248(1) -
2 1125 1125 211680000 ' Agp contribution due td= s 0.004 920 550(5)
5G . - - 0.001 834 827(1) -
2 4725 4725 6048000 ' Ago contribution due td 0.004 039 3324(5)
5G . 269 0.001 757 471(1) o
/2 4725 4725 283500 : Ago (see entry forZ in Table V) 0.001 834 827(1)

n=5 under investigatiofisee Eqs(27) and (28) and Table tables contain enough values Af(nl;) for extrapolations
V]. They may be helpful in an independent verification ofto be made. We represent the asymptotic behavior of
our calculations. Note that th@;, and Gy, states involve  Agy(nl;) asn—o as
the most problematic angular-momentum algebra of all
atomic states considered here.
For someP stategsee Table)l, the values ofAg, reported Aso(nlj)=Az(n,l;)+0O
here are four orders of magnitude more accurate than previ-
ous results[13,14], due to the improved numerical algo-
rithms. For the P4/, state, the numerical value for thg;,
coefficient of Table | differs from the previously reported
result[14] by more than the numerical uncertainty quoted in As(n,lj)=ap(lj)+
Ref.[14], whereas agreement with previous respi,14] is
obtained in the case ofR,, and 4P, states. The discrep- , o )
ancy for Ag(3Py,) is on the level of 510 4 in absolute Such an asymptotic behavior is m_otlvated, for any Son-
units, which corresponds to roughly 2 Hin frequency state, by |ts_§|mllar|ty to the functional form of the self-
units) on the self-energy correction in atomic hydrogen. The€nergy coefficien\g, in Eq. (7)—see Eq.(11). The values
computational error in Ref14] was caused by numerical that we obtained for the coefficiensg(l;) can be found in
difficulties in one of the remaining one-dimensional integrals'able VIII. The fitting method is described in the Appendix.
involving the hypergeometric functiorf80) and(32), which _ The approximationAs(n,l;) to Ag(nlj) is depicted in
could not be evaluated analytically. The numerical difficul-Fig- 1, for P and D states. According to the graphs in this
ties encountered in previous calculations due to slow conveffigure, theO(1/n®) contribution in Eq(35a is much smaller
gence of the integrals are essentially removed by the conveftan the uncertainty iod3, which comes from the uncertain-
For some states, rather severe numerical cancellations are The coefficients; of Eq.(35b) given in Table Vil can be
observed between the high- and low-energy contributions t&/Seful to spectroscopy experiments that involve electronic
the self-energy, as well as between the different contributionteVels with principal quantum numbers that are higher than
to the low-energy part. This intriguing observation is docu- N _
mented in Tables VI and VII, using theGs,, state as an TABLE VIl. For the 567,2_ s_tate, an _addmonal num_erlcal_ can-
example. Note that these numerical cancellations go beyorgf!iation occurs when the finite contributions £g, originating
the required exact, analytic cancellation of the divergent con!'o™ he low-energy partsee the ninth row of Table Vand the

I . ) . high-energy part are added according to Et9). The high-energy
tributions which depend on the scale-separation pararaeter contribution isAgy(F,) = K— AeIn 2, and the low-energy contribu-

tion is Ago(FL) = L.

1
3 (35a

where

w+az(|j)

> (35b)

V. Ago FOR HIGHER-n STATES

Aco(Fr) —0.001 020 413
This section contains approximate formulas for #hg Aso(FL) 0.001 834 828(1)
coefficients ofP and D states, for principal quantum num- Ago 0.000 814 415(1)

bersn, which go beyond those of Tables | and Il. These
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TABLE VIII. The asymptotic behavior oAgy(nl;) asn—= can  VI. APPROXIMATIONS FOR Ag, AND FOR THE BETHE

be described by an expansion im1/The following table contains LOGARITHM
the first coefficients of such an expansion, as defined in(&%). . .
The approximate values dfgo(nl;) that can be directly deduced [N addition to studying the dependenceAyy(nl;) onn,

from this table and from Eq35b) are the best available values of @s We did in the preceding section fBrand D states, it is
Ago for P andD states, except for the states that are represented ifiteresting to analyze the behavior &f¢(nl;) as a function
Tables | and Il. These results are depicted in Fig. 1. of I, for j=1-1/2 and j=I+1/2. We conjecture that

Aao(ﬁj), forn=1+1 andj=1+1/2, decreases as

State ag a, a,

Py —1.249(9) 0.0(2) 0.87(45) o eeg(j=l)

Pan —0.69(2) 0.15(5) 0.25(25) Ago(nlj) ~ K with k=3, (36)
Da 0.011(1) —0.032(7) —0.05(9)

Dy 0.034(2) 0.025(5) —0.18(4)

where we probably havek=4 or k=5 [c(1/2) and
c(—1/2) are two unspecified numbérgorm (36) is moti-
those of Tables | and II. In fact, the self-energy of the elec-vated in this section. . _

tron of a hydrogenlike ion can be estimated through Egs. We have also studied the asymptotic behavior of the Be-
(8), (12), and(35), with .45 defined with the values of Table the logarithm Irky(nl) because this is a quantity similar to the
VIII. Hydrogen has been and will be the subject of extremely“relativistic Bethe logarithm”Agy and it yields a large con-
precise spectroscopy experiments, which now approach thebution to the self-energlsee Eqs(7) and(8)]. We show in
level of 1 Hz of uncertainty in transition frequencies. Thethis section that the Bethe logarithm mﬂ), wheren=1
uncertainty in the self-energil) which comes from the un-  +1, appears to behave asymptotically las. This result
certainties in the coefficients of Table VIII through E¢8)  jitters from thel 72 asymptotic behavior of Iky(nl) de-

and (35) is compgra}ble'to the current experimental limit. In duced from Eq(B5) in Ref.[54] (p. 845. Extrapolations of
fact, the uncertainties itd; in Eq. (35b) contribute to the the Bethe logarithm lkg(nl) as a function ofn have been

self-energy less thar 2 Hz for Py, states withn>7, less  ghiaineq through the method described in the Appendix, and
than+ 1.6 Hz for Py, states witn>7, less thant0.12 Hz | ,caq in Ref[55] for S, P, andD states (=0-2).

for Dy, states withn>8, and less than=0.12 Hz for B, . —
states withn>8 (precise values of\g, for lower values oh We also postulate that the Bethe logarithrikfml), where

can be found in Tables | and)lI n=I+1, can be expanded in powers lof* aboutl =c. In
Moreover, the coefficients of Table VIII can be useful for order to find the first five coefficients of such an expansion,

theoretical calculations. In fact, future values A, for P We used the fitting procedure described in the Appendix. The

and D states can be checked against the estimates providdégSulting approximation reads

by A; in Eqg. (35b—see also the curves of Fig. 1.

3 — 0.024784) 0.03878)
Pip Dsp I°Inky(nl)=| —0.056 8532) + i + >
S |
-1
Ay Aso —0.005 —0.1146) 0.162)
Jid =
12 e 0013 | (37)
0 01 0203 04 05 _0'020 04 02 03
1/n 1/n
05 P32 Ds)2 wheren=1+1 and the neglected contribution is of order
05 0.035 N | ~5. This approximation should be valid for-; neverthe-
4 ~055 4o 00 . less, it yields values of the Bethe logarithm that are both
60 _0.6 . 60 0.025 . . . :
_065 7 o I 0.02 precise(see Fig. 2 and compatible with all the values of
-07 e . nl =
e, s B Inky(nl) for 1=3,...,19 (taken from_Ref:[G]). For thel
1/n I/n =20 levels of hydrogen, the uncertainty in the result of ap-

_ proximation (37) is negligible, when compared to the best
FIG. 1. These graphs show exact and approximate values of theyperimental uncertainty in transition frequency measure-
self-energy coefficienAgy—see Eq.(7). Exact values are repre- ments(about 1 Hz[1]).

sented by dots and can be found in Tables | and Il. The two curves Moreover, we suggest that the orders of magnitude of the
of each graph represent the upper and lower limits of the approxi- '

mation toAgq provided by.A; in Egs.(35), by taking into account self-energy coefficientigy(nl;) and of the Bethe logarithm

the uncertainties in the coefficients of Table VIII. For levels in !n ko(nl) do not depend on the principal quantum numbger

hydrogen with principal quantum number 10, the uncertainty in L.e., the order of magnitude of a_coeﬁme@ogo(_nlj) IS given
Ag, deduced from these curves contributes to the uncertainty in thBY the order of magnitude dkgo(nl;), wheren=1+1 (and
electron self-energyl) by less than 2 Hz(The use of It as the  Similarly for the Bethe logarithi For Agg, this behavior is
abscissa allows all large principal quantum numbrets be repre-  a generalization of what is observed D, F, andG states
sented in the grapbs. in Tables I-1V. For the Bethe logarithm, the fact that
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0.0 02 03 04 ",
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FIG. 2. Comparison between exact values!8h ky(nl) (dot9
and the truncated asymptotic expansion of &) (where the up- -2.5 0
per and lower limits are represnted by the two cujveshere 26
In ky(nl) is the Bethe logarithm, and=1+1. The numerical values © _27
of the Bethe logarithms used in this graffi] are compatible with S id
the values deduced from E@7), which are in the area between the & -2.8 L
two curves. The fact that the data points seem to converge toward a -29 P
finite value (=—0.057) asl *—0 supports the conjecture of an /"’
| ~3 asymptotic behavior of the Bethe logarithmkjnl). 010203040506 0.7 0.8

_ I _
In ko(nl) and Inky(nl) have the same order of magnitude can f[l T+

be observed for states with<n=<20 by inspecting the re-

sults of Ref.[6]. FIG. 3. Upper graph: log-log plot of the Bethe logarithm
The expressiong36) and(37) for the asymptotic behavior Inky(nl), wheren=1+1. Lower graph: slope between two succes-

of Ago(nl;) and Irky(nl), wheren=1+1, could thus be used sive points of the log-log plot. The limit slope of3 asl—»

for estimating the order of magnitude of the self-energy withobserved in the lower graph indicates that the Bethe logarithm

the help of Eqs(7), (8), and(11). Estimating the self-energy Inky(nl) behaves asymptotically as 3. This confirms what is ob-

correction(1) can be useful in high-precision spectroscopyserved in Fig. 2(The abscissa of the points in the lower graph is

experiments with largé-levels. Thus, for instance, a recent chosen so as to produce a graph from which the limit slope of the

experimen{8] required evaluating the self-energies of circu- UPPer graph as—cc can be easily deduced.

lar (n=1+1) states of orbital quantum numbk&30. On . )

the theoretical side, future calculations éfo(nl)) and ~ can, for instance, be checked with the formulasAq(nl;)

Inky(nl) can be checked against the asymptotic behaviors dieviewed in Ref[2] (p. 468 with the help of Eq.(10) for
Ago(nl j) and Irky(nl) which are described above. Asi(nl;), where W (n+1) can be expanded in powers of

Since the order of magnitude 8&y(nl;) does not appear 1/(n+1)_[343] (Se?' 6.3.18 ) —
to depend om, it is natural to represent {for fixed| andj) ~_ Thel ~ behavior of the Bethe logarithm Ke(nl), where
by the order of magnitude of either ljm..As(nl;)—largest n=I+1, is suggested by Fig. 2. The points of this graph,
possiblen— or Agy(nl;), wheren=1+1 is the smallesh which represent
possible for the angular-momentum quantum nunibé&¥e
chose the latter possibility for two reasons. First, small-
values ofAg(nl;) are available(see Tables I1-1Y. Second,

future values ofAgy(nl;) for higher angular quantum num- ~ 3 :
bers| are likely to be obtained first for states wheres| Ve checked thé"* behavior deduced from the study of Eq.

+1, which is the smallesh possible for a given angular- (38 Py calculating the slope of a log-log plot of the Bethe
momentum quantum numbkrin particular, such states have logarithm Inky(nl) (with numerical values taken from Ref.
simpler radial wave functiongthe number of terms in the [6]). The result, shown in Fig. 3, indicates that the Bethe
radial wave function of a state increases with1). And  logarithm does indeed behave asymptoticallyla$; this
finally, circular states {=1+1) are relevant to high- coincides with the conclusion from Fig. 2.

13Inko(nl), (39

appear to converge toward a limit=(—0.057) asl 1—0.

precision spectroscopy experimer’(tsee’ e.g., Ref[s]), |t is pOSSib_Ie to use the procedure depicted in F|g 3to

whereasn= states are unphysical. estimate the integer exponektof an asymptotic behavior
As mentioned above, we expect an asymptotic behaviok™* for the relativistic Bethe logarithmAgy(nl;), wheren

of the form |7k, with k integer, forA60(n|j) and for the =[+1 andj=|i1/2 In faCt, it is reasonable to use the

Bethe logarithm Irky(nl). Such a functional form is moti- Bethe logarithm lky(nl) as a guide for studying theelativ-
vated by the fact that all thé,(nl;) coefficients of the istic Bethe logarithmAg,. Thus, the procedure depicted in
self-energy functiorF in Eqg. (5) can be expanded in power Fig. 3 was applied to the self-energy coefficidgt(nl;); we
series of i andl %, except maybe for the two coefficients obtained the asymptotic behavior presented at the beginning
related to this sectionAgy and A4y, where the latter is a of this section, and in particular in E¢36). The graphs
function of the Bethe logarithrisee Eq.(8)]. (We suppose supporting Eq(36) are given in Fig. 4 for states with=1
thatAgp andA4g can also be expanded in such a seyigéhis  +1/2, and in Fig. 5 for states with=|—1/2. Each of these
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FIG. 4. Upper graph: log-log plot of the self-energy coefficient
Ago(nlj), wheren=1+1 andj=I+1/2. Lower graph: slope be-
tween two successive points of the log-log pisblid line) and
extrapolation tod —oo (dashep By analogy with the graphs simi-
larly obtained for the Bethe logarithm in Fig. 3, we conclude that
for j=1+41/2, Agy(nl;) behaves asymptotically ds* with k=3
and, probablyk=4 or k=5. The values ofAg, are taken from
Tables II-1V.

graphs uses only three values &f, (D, F, andG state$;
even though this is a relatively small number of values com
pared to the number of available values of the Bethe log
rithm, the behavior of the first few data points in Fig. 3
justifies using only a few small-values in order to predict

the asymptotic behavior dkgy(nl;) for |—oo.

The values of théAgy coefficient of S and P states were
not used in obtaining Eq36), because it is convenient to
treat the orders of magnitude of tig, coefficient of these

states separately from the orders of magnitude of higher-
states; Fig. 6 illustrates this point. We note that the self-

energy coefficienfAg; also exhibits an exceptional behavior
for S and P states[see, e.g., Eq(4.49 in Ref. [3]]. As an
additional consequence, estimating the coefficierf the
asymptotic form ofAg, in Eq. (36) would require the use of
states with orbital angular-momentum quantum number
=2 (D, F, etc).

The possible values of the exponérin Eq. (36) deduced

from both the graphs of Figs. 4 and 5 are compatible with

each other K= 3 with, probablyk=4 ork=5). Itis indeed
expected that the asymptotic form Agy(nl;) be the same
for j=1+1/2 andj=1—1/2, as can be seen from the numeri-
cal values foD, F, andG states found in Tables II-1V. More
precise estimates of the asymptotic exponein Eq. (36)

can be obtained through the procedure we used in Figs. 4 an

5, as soon as additional valuesA(nl;) with n=1+1 are
available.
According to the results of this section, theelativistic

a
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FIG. 5. Upper graph: log-log plot of the self-energy coefficient
Ago(nl;), wheren=I+1 andj=I1-1/2. Lower graph: slope be-
tween two successive points of the log-log plsblid line) and
extrapolation td —o (dashep By analogy with the graphs simi-
larly obtained for the Bethe logarithm in Fig. 3, we conclude that
for j=1-1/2, Ag(nl;) behaves asymptotically ds with k=3
and, probablyk=4 or k=5. The values ofAg, are taken from
Tables II-IV.

Bethe Iogarithm"AGO(m j) decreases at least as fasnd

probably one or two powers fasjeas a function of, as the
Bethe logarithm Irky(nl). Such a behavior is also found in
the (Dirac-Coulomb energy of hydrogen and hydrogenlike
ions. Thus, the Dirac-Coulomb energy of an electron bound
to a nucleus of charge numbzgris [see, e.g.[2], p. 466

-1/2

e |1 (2 (39)
" (n—8?2] '
() m—a— E——-
02
= -04
306 :
3-0.
0.8
—1 =
=4 -2 0 2 4
K

FIG. 6. This graph shows values of the self-energy coefficients
Ago(nl;), wheren=1+1, as a function of the Dirac quantum num-
bgrx, wherex is defined in Eq(2). The large valuédgo(1S,))) =

31 is not represented here. This plot shows thaSfandP states
(k=—2, —1, and 1, the A4y coefficient exhibits an exceptional
behavior; such an exceptional behavior is also found in the self-
energy coefficienf\g; in Eq. (10), which is known analytically.
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where 0.025

0 <
5=(j+ 12— \(j+1122—(Za)Z. ~0.025 /;
F -0.05 /”/
According to Eq(39), an electron in a circular staﬁj with —0-0075 ~ '//o-_— _____ N
j=1+1/2 (andn=1+1) h N B > e S
i (andn ) has an energy 0025 M./f
> 0 10 20 30 40 50
Eni+ 2= V1-[Zal(I+1)]" (40) (@) z
In the Taylor expansion(in Za) of this energy, the ] //’
asymptotic behavior of the coefficient a &) is given by
| =2k (this conclusion also holds for circular statg with j 0 ,/"/4
=|-1/2). Thus, for circular states, successive relativistic I -1 //
corrections to the nonrelativistic energy of a bound electron -2 /
fall off faster and faster with the orbital quantum number /
with two additional powers df ! for each order inZa)?. If -3 !
this rule applies to the coefficients_of the self-energy expan- 0 70 20 30 40 S0
sion (7), the asymptotic form oAgy(nl;) asl— should be (b) Z

| ~4: in fact, the lower-order coefficiem,o(nl;) decreases as
| =2, as can be seen in E@8). On the other hand, since
gg(’;(hr:alj)Igg;i:ritk?l?nwe:;%?yi?lsg] atgilatggzt\l,z C(r)l:IrgCtgzglc}g tgﬁgiven on the solid line. The two-coefficient approximati@ti) is

’ — represented by long dashes. The three-coefficient approximation
asymptotic form inl ® for Agy(nl;), since the Bethe loga- (42) uses the value ohgy(2P5,), which we provide in Table I, and
rithm behaves a$™*, as described in this section. These s indicated by short dashe@) displays the improvement provided
observations are fully compatible with the graphs of Figs. 4oy the inclusion ofA4 in the self-energy approximation, as mea-
and 5, from which the asymptotic for(86) of AGO(HJ-) was  sured by the functiohin Eq. (43); negative values dfindicate that
deducedwith an exponenk probably equal to 4 or)5 including Ago improves the approximation.

FIG. 7. (a) shows exact and approximate values of tbealed
self-energyF of a 2P,,, electron[see Eq.(1)]. Exact values are

and the second approximatidR(®), includes in addition the

VII. CHECKS OF THE  Ago COEFFICIENTS next-order contribution reported in this paper:

We have checked our analytic results fdg, (cf. Tables
I-1V) by an independent method: the analytic results were
compared to values deduced from nonperturbative, numeri- ) i
cal calculations of the self energl). We have used the OF & given electronic levell;, one expects thg)t for low,
numerical self-energy values of Refd5,23,27,56-5 as  (he curve of the higher-order appr?2>)<|mat|<ﬁ4 (Za) be
well as new value59], which extend the results of Rép7] ~ closer to the curve of (Za) than Fi¥(Za). In order to
to smaller nuclear charge numbets(to Z between 10 and Check this, we plotted the quantity
25). In most cases, the checks that we detail betmnfirm
the values ofAg, reported in Tables I-1V to a relative preci-
sion of about 15%. The few exceptions are the following. For
2P states, the numerical values of the self-energy confirm

the results of Table | to about 1%. FoDs, states withn  \hich should go to-= asZ—0, as can be seen from Eq.

FO(Za)=Ast+ (Za)[AgIn(Za) 2+ Ag). (42

F(Za)—F®)(Za)|

| (Ze)=In F(Za)-F®(Za)|’

(43)

=3,...,8, the nonperturbative self-energy results yield (7) n Eq.(43), the purpose of the logarithm is only to obtain
Ago(ND32) =0.005(10), in agreement with the results of more legible graphs; a value oflower than zero indicates
Table Il. And finally, we did not checReo(8D5)p) in Table Il that includingAg, in the approximation of improves the

by using nonperturbative self-energy values because no sug§wer-order approximation. For the states of Tables -1V,
values are available for thd:&/z state. However, as depicted graphs of Eq(43) are Compatib|e with their expected behav-
in Fig. 1, the value oAg((8D5),) reported here appears to fit jor [1(Za) is negative forZ sufficiently close to zero, and is
well within the series 0fAgy(NDsp) values forn=3,...,7  consistent with a- limit]. Figures 7 and 8 show this be-
(see Table I\. havior for two electronic states.

The first check that we applied consisted of comparing the  Moreover, the improvement provided by the inclusion of
numerical, exact results fdf to two of its successive ap- Ago in the approximation foF becomes greater as the total
proximations. The first approximatior;(*(Za), includes  angular momentunj increases: for givem and Z, the im-
thetwo dominant and already-known coefficiertg, (8) and  provement functiorf43) decreases gsincreases; this behav-

A1 (10) of expansion(7): ior can observed by comparing Figs. 7 and 8. Similarily, the
range ofZ for which approximatiorF(®) is better tharF ()
FO(Za)=As+ (Za)?AgIn(Za) 2, (41)  increases with increasirjg In the worst of the cases consid-
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F -0.0124 ror o -
.20 0B =—— = == = = =
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(a) zZ
0 0 0.2 04 0.6 0.8 1
Za
-2 Ve FIG. 9. Plot(solid line) of numerical values of the remainder
-3 La GsH(4Dsp,Za) of the self-energyb); the dashed line indicates the
4 -4 { value of Ago(4D5/)=0.0314 reported in this papésee Table .
—5 / By definition, the coefficienf\g, can be obtained as the lin(i) of
6 + GggasZa—0. This plot shows that the value Af, extracted from
numerical self-energies is consistent with the value obtained by the
- 0 20 40 60 80 100 calculations presented in this paper. We made identical observations
(b) 7 for all the states of Tables I-IV.

FIG. 8. These two figures represent, respectively, the same As a by-product of our work with graphs of
quantities as those found in Fig. 7, but for_th@{nzlevz_el instead _of GSE(nlj Za), we estimate the self-energy remainder
the 2Py, level. The facF that the curve ifb) contains negatl_ve GSE(an @) relevant to hydrogenZ=1) to be 0.03(5) for
\{alues ofl [see Eq(43)] |nd|c.ates that the three-order approxima- 3D., and Dy, states/see Eq.(5)]; this is larger than the
tion (42) to the self-energy7) is better than the two-order approxi- estimate of 0.0Q1) given in Ref[2] (p. 468. These two new
mation (41), at least over the range of nuclear charge numiers : . e :
=25-110. The three-order approximati@¢a2) uses the value of values change the previous estimate of the _self-energy of
A 5G-y5) reported in Table IV. 3Ds, and D), states through Eq7) by a relat]vely large

amount, compared to the current best experimental uncer-
ered here (= 1/2), approximatiorF® is better tharF® yp ~ tainty in transition frequenciesabout 1 Hz[1]). Thus, a
to Z=25. As shown in Fig. 8, for a high-level such as variation of 0.03 inGs(3Ds;,a) in Eq. (5) corresponds to
5G.,,, the higher-order approximatioR® is better than a variation of aboqt 50 Hz in the self-energy corregtﬁd?hof .
F@ even up toz=110. the 3Dgp Iev_el in hydrog(_an._ The same vanaﬂpn in

The second check consisted of estimatig, from the ~ CGse(4Dsp2,@) induces a variation of about 20 Hz in the
numerical values of the self-ener@y). For all the electronic  S€lf-energy of the B, level in hydrogen; on the other hand,
levels nl; studied here(except for 83, we have plotted this change is small compgred to the uncertainty of the rel-
the functionGgg(nl;,Za) of Eq. (5); this is made possible €vVant measurements considered in Ref. _
by the fact that all the coefficients of E¢) are (analyti- As a third and last check, we used the numerical, exact
cally) known for any staté3,29], except for the Bethe loga- values ofF in order to study the following difference be-
rithm which has been numerically evaluated for many state§Ween remainder§sg [see Eqs(5) and (7)]:
including the ones we consider h¢fg6,41,42. As indicated
in Eqg. (6), the limit of the remaindeGsg(nl;,Za) asZa At Gge(nl,Za)=Gge(nl) 119, Za) — Ggenly _ 10, Za),

—0 is by definitionAgg(nl;). We have estimated this limit (44)
both visually and by fittingGgg(nlj,Za) with various

choices of nonzero higher-order terms. A typical curve forwhere, by definition ofAg, (6),

Gse(Za) is shown in Fig. 9. The estimates 8§, obtained

by these proceduresonfirmthe independent analytic results lim AwGednl.Za)=Ax(nl — And(nl 45
of Tables I-IV to a typical accuracy of 10—-20%, with a few Za—0 1Gse(Nl Za)=Agd 112 = AedNli 1) (49)

exceptions. Thus, for R levels, plottingGge as in Fig. 9
allowed us to confirm the values 8f(2P;) in Table | to a

precision of about 1%. This higher precision is obtained by = ArsAeolNl), (46)
using the self-energies of2states obtained in Ref15] for
values ofZa close to zeroZ=1,...,5):such lowZ self- which denotes a quantity associated to the fine structure. The

energies are well suited to an evaluation®gf by the limit ~ numerical evaluation of this limit is interesting: for the states
(6). Plotting Ggg for Dy, states lead toAgy(nDgy) — Of Tables |-1V, the numerical results féf yield values of
=0.005(10) fom=3, ... ,8, inagreement with Table Il. Fi- AAg(nl) which are more accurate than our numerical es-
nally, since no non-perturbative self-enery is available timates of the two individual termsAgy(nli;q.o) and
for 8D, states, we were not able to independently obtainAgy(Nnl|—1). Our analytic values fol Ago in EQ. (46) were
Aso(8D5,) by using such values. checked by plotting
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0 charge numbeZ. We provided estimates and valusse also
- 0.05 s Ref. [9]) for the first two nonanalytically known contribu-
- 0.1 \\ tions to the self-energy expansigb), namely the Bethe
0,05 \ logarithm Irky(nl) and the so-calledAgy(nl;) coefficient,
Kk~ \\ which can be viewed as lativistic Bethe logarithm. The
B2 \ main numerical results are contained in Tables I-1V, in Eq.
-025 (35), and Table VIII, in Eq.(36), and in Eq.(37). We have
-0.3 2 also conjectured, in Sec. VI, that the order of magnitude of
20 40 60 80 100 the re!atiyistic Bethe logarithmgg(nl;) IQOeS not.depend on
z the principal quantum number In addition to this, we note

that the orders of magnitude @&gy(nl,_1) and Agy(n (I

+1),,3-) are the sam¢for a given set of quantum numbers
n and[>1) in Tables I-IV. These results, taken together,
Xield in particular the best available approximations of the

values of A;Ago(5F) in Eqg. (46) obtained independently from fself-e_nergy 'n_hydlrc’g?n and light hy(ljmgen“ke Ions,hexcept
Table 11l and from nonperturbative self-energi@s [via Egs.(7), orn=1andn=2 levels[12,19 (see also Sec. V}j such an

(®), (110, (44), and(45)] do not differ by more than about 3%. ~ @PProximation can be obtained through E@s.and(7).
CalculatingAgy has been a challenge since the seminal

FIG. 10. Plot of the functiorK in Eq. (47) for the 5, and
5F 5, states. The limit of this function @&— 0 must be zero if the
coefficientsAg, of Tables I-IV agree with exact, numerical values
of the self-energy. The curve displayed here indicates that the tw

AGenl, Za) work of Bethe[4] on the dominant self-energy coefficients of
K(Z)= fSPSE —1, (47) Sstatedsee Eqs(7) and(1)]. Details of the method we used
ArsAs(Nl) were described in Secs. Ill and IV. As discussed in Sec. VI,

including the coefficient®\g, reported in Tables I-1V in a
(truncatedl expansion of the self-energy improves its accu-
racy over a large range of nuclear charge numiers

We checked our calculations éf, by both analytic and
numerical means. The so-calledmethod, which we have
employed(see Sec. I, makes divergences appear in the
éow- and high-energy contributions t84,, as the scale-
separating parameterbetween these two contributions goes
to zero. We have observed that, as required, these diver-
gences cancel when the two parts are added. Moreover, our
calculations correctly reproduced the known lower-order co-
efficientsA,o andAg,. We have also checked our results for
Ago against numerical values of the self-energy, and were
able to confirm them by this independent method to the level
of about 15%(except forDy, states, as explained in Sec.

This represents ammprovementover the accuracy of vin).

: : o Obtaining results foAg, required extendinganalytically)
Ago(nl;) obtained by the previous check. This improvement 60 X
comes evidently from the fact that the relative deviation ofthe angular algebra developed foP Ztates[13] to higher

AGee in Eq. (44) from AgAg in Eq. (46) is small over the angular momenta. Techniques of numerical convergence ac-

whole range 8-Z<110, compared to the relative deviation celeration of serief7,26,28 were instrumental in evaluating
' the parts ofAgy which could not be analytically calculated.

Gse(nl;,Za) The recent analytic calculations of R¢27] enabled us to
TR (48)  obtain with a high precision the self-ener(l) of electrons

where A Gsgnl,Za) was calculated from th@umerical
values ofF [see Eq.(7) and the coefficients reproduced in
Sec. Il, and where the value af;Ago(nl) in Eq. (46) was
deduced from tha@nalytic results of Tables I-IV. If the nu-
merical and analytic estimates afAgy(nl) do agree, the
function (47) would go to zero aZ—0. This is indeed con-
sistent with what we observed; Fig. 10 provides an exampl
of this behavior. Weconfirmthe values ofA;Ago(nl) in Eq.
(46) which can be immediately deduced from Tables I-IV.
The analytic results foAAgo(nl) are thus found to be con-
sistent with the numerical data farGge; the level of con-
firmation is 5—10%[relative to At Agy(nl)] for P and D
states(1% for the 2P states, and B states not included, for
the reason mentioned abQy8% for F states, and 1% fdG
states.

Acll}) with high (j >3/2) angular momentum, for various values of
of G [see Eq.(5)] from Agg(nl)) in Eq. (6), with j=I  the nuclear charge numb@ the new calculations that we
+1/2 orj=1-1/2. As a consequence, the uncertainty in thehave performed required the use of massive parallel comput-

numerical evaluation of the limit of Eq47) asZ—0 is ~ ©rs and thousands of hours of computing tiriEhese nu-
relatively small. Figure 10 shows an example of the small/nerical data, which have been used for the plots in Figs.
ness of the contributions Gz which go beyond\ Ay,  8—10. will be presented in detail elsewh¢8®].) In order to
Moreover, we have observed that the higher the angular mgierform numerical checks dfs, we have also used the most
mentuml, the smaller the values of the deviatit#?), hence ~"écent available values of the self-energy. This provided us
the stronger confirmation of our values afAg(nl) for ~ With independent values of thag, coefficients, extracted
high orbital angular momenta. from the numerical self-energies, thus allowing us to check
the analytic results presented in Tables |{Bée Sec. VI\.
Some cancellations occur between different contributions
to Agg (in addition to the cancellation of the-parameter
This paper contains results that are relevant to the selfdivergences for some of the atomic states investigated, the
energy of a norS electron bound to a point nucleus of absolute magnitude of thig, coefficient is as small as 18,

VIIl. SUMMARY OF RESULTS
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whereas the largest individual contributionAg,, when fol- —-0.02
lowing the classification of the corrections according to Refs. -0.025
[13,14, is of the order of 102 or larger for all atomic states < -0.03
discussed herésee also Tables VI and VI l% —-0.035 =
Future calculations of the Bethe logarithmijinl) and of ~= —0.04 -
the relativistic Bethe logarithmgg(nl;) could also fruitfully § —0.045
be compared to the estimates given by Hg§), (36), and = =0.05 ’T.//(
(37), and Table VIII. The results presented in this paper also —0.055 i
allow one to perform checks of future exact self-energies 02 04 06 08 1
obtained by numerical methods, by comparing their values to !
the three-term self-energy approximati@2) provided here
for P and highett states. The values &g, in Tables -1V FIG. 11. This figure shows the lines going through a few pairs
can be of interest for analyzing the Lamb shift of highly of successive data points given b&2)—see also Fig. 2. Each of
excited(high-n and hight) electronic states in recef8,16— these lines is a local approximation to the curve underlying the data

18] and future high-precision spectroscopy experiments. Thoints. Each line yields an estimate of linik1) of the data points
results of Sec. IV-VI also provide the best available self-afsl'*lﬂo_(th's_ estimate is at the intersection of the line with the
energy approximation for many stanelq and nuclear charge |7*=0 axi9. Figure 12 graphically displays these estimates.
numbersZ (see Sec. VI, these approximations can, for in-
stance, be useful in evaluating the contribution of QED ef-35 an example—here we hawe=1+1 and Ink,(nl) is the
fects in atomg60—63 or moleculeq64]. Bethe logarithm (9). This limit was evaluated as
—0.056 853(2)[see Fig. 2 and Eq37)].
Figures 2 and 11 contain data points which are relevant to
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13In ko(nl) (A2)

In order to improve over the estimate0.057(1) for Eq.
(A1), we fit (exactly each pair of two consecutive points
(A2) in Fig. 2 with a line, as depicted in Fig. 11. Each of the
fitting lines in Fig. 11 gives an estimate of limiAl) by
extrapolation tol *=0 (intersection of the line with the
| ~1=0 axig. Figure 12 contains each of these estimates, as a

This appendix describes a fitting procedure which is defunction of the average abscissa of the two points that were
signed to extract focal” numerical quantities from a set of
data points, and to allow one to assess the numerical uncer- —0.0566
tainty associated to these quantities. A partial sketch of this /
procedure was first introduced in Ré¢B65|. Here, “local” —0.0568
refers, for instance, to the evaluation of a perturbation expan-

~0.057 N
A
-0.0572 .,

APPENDIX: LOCAL FITS

sion about one abscissa,; the purpose of the method presented
here is to perform fits that are local to an abscissa of interest,
as opposed to finding the best global fit of some data points.
We thus used it in order to obtain asymptotic coefficients for
Ago(nl;j) for P and D states in Sec. \(see Table VII), as 0 0.1 02 03 04

well as the asymptotic expansion of the Bethe logarithm b

Inky(nl) in Eq. (37)—in these applications, the quantities —[ T +1+D)71

evaluated are local to eithar=« or | =«. This method can, 2

in principle, be applied to many other problems that require Fig. 12, This figure shows the estimates of lifAt) obtained

Limit estimate

local fits. ) ] through the two-point fits of Fig. 11. From this graph, we estimate
In order to describe the local-fit procedure, we take thqimit (A1) to be —0.056§1), which is more precise than, and con-
evaluation of the limit sistent with the value- 0.057(1) obtained from the original data in

Figs. 2 and 11. The limit estimates are plotted along the vertical
o direction, while the abscissa associated to an estimate is the average
lim13In ko(nl) (A1) abscissa of the two data points of Fig. 11 which were used in pro-
| —o0 ducing it.

042101-14



PERTURBATION APPROACH TO THE SELF-ENERGY. . . PHYSICAL REVIEW A 68, 042101 (2003

~0.0568 ~0.05685
S T ., —0.056852
g~ ~ "~ § 0.056854 Pvaee .
£ -0.057 N N £ _0.056856
g —0.0571 N 3 ~0.056858 h
£ 00572 B 5 _0.056862
S -0.0573 —— ~0.056864

0 0.05 0.1 0.15 0.2 0.25 0 005 01 0.5 02 025

Average of i~ valnes Average of six I”! values

FIG. 14. This figure shows estimates of lintk1) obtained by
fitting the data in Fig. 11 with fifth-degree polynomidis 11).
The high relative stability of the estimateslas—0 allowed us to
give the precise value-0.056 853(2) in Eq(37) for limit (Al).

FIG. 13. From the lower to the higher curve: estimates of limit
(A1) obtained through fits of the data points given @#2) with
polynomials of degree Isee also Fig. 12 3, and 5(see also Fig.
14). Fitting the data in Fig. 11 with 1—-6 points yielded mutually
coherent estimates of limitA1) with an exponentially decreasing
error. associated to each fit gf data points given byA2) by cal-

culating three fits: a fit with the middle values of the ordi-

used in obtaining it. Because the curve in Fig. 12 is relativelyhates, a fit with the higher values, and a fit with the lower
flatter than the curve in Fig. 11, we can estimate lipsit)  values; the three estimates of the fitted quantiy) ob-
with an improved uncertainty; thus, we deduce from Fig. 1otained through this procedure define an estimate with an er-
the value—0.0568(1) for limit(Al) that we are studying, for bar (see, e.g., Fig. 15 Other ways of estimating the
which is consistent with the previous estimat®.0571). uncertainty in the fit result can be used; a good choice of
This better estimate-0.0568(1) of limit(Al) can be fur- ~ uncertainty evaluation yields successive estimates of the fit-
ther improved by continuing to increase the numpef data  ted quantity which are compatible with a smooth curve of
points (A2) included in local fits of the data. Thus, for an estimategsee, e.g., Fig. 15
increasing numbep of data points, we fittedexactly each One of the advantages of the local-fit method presented in
set of p successive pointA2) in Fig. 11 with a polynomial this appendix is that data points that are located far from the
of degreep—1 (linear combination of the functions 1, abscissa of interest (*=0, here can fruitfully be used in
171, ... 1771 and represented the value of the polyno-evaluating the fitted quantitflimit (A1), in our examplg
mial extrapolated td “'=0 as a function of the average Thus, as Fig. 15 illustrates, data points given () with
abscissa of the points. Figure 13 depicts this process. The“|arge” abscissas can yield more precise estimates of limit
plotted values are estimates of limiAl) obtained with (A1) than data points with small abscissas. This behavior is
higher and higher-ordefiocal) fits of the data points given particularly useful when data points in the region of interest
by (A2). In Fig. 13, the abscissa of each estimate is thg,gye relatively large uncertainties.
average of the abscissas" of the fitted data points given by The procedure detailed in this appendix also allows one to
(A2). We observed that the curves so obtained becexpe-  study the quality of lists of numerical results that should lie
nentially flat in the sense that their relative amplitudes be-gn 3 smooth curve, but whose consistency is not obvious

come eXponentia”y Sma”er and Smallel’—until the Uncertain‘[hrough a Simp'e inspection or p|ot of the Va|ues_ In fact,
ties of individual estimates become important, as described

below. This fact, which is illustrated in Fig. 13, allowed us to
obtain more and more accurate estimates of lizi).

The most accurate value that we obtained for li(éf)
through the local-fit procedure described here s
—0.056 853(2)[see EQq.(37)], as is illustrated in Fig. 14.
This limit was obtained by fitting each sequencepof 6
data points with a fifth-degree polynomial. Fits of the data
points (A2) with larger numbers of data points display more
irregular estimate curves; this can, for instance, be seen by 0 01 02 03 04
comparing Fig. 14 with Fig. 15. Average of nine 1! values

As we have seen above, the uncertainty in the fitted value

can be evaluated by visually ext'rapolating the fitting curves £ 15. This figure displays estimates of lir#1) obtained by
(i.e., curves such as those of Figs. 12)-J&nother uncer- fiting the data in Fig. 11 with a eigth-degree polynomiais! 2.
tainty must in general be taken into account in order to 0bqt should be compared to Fig. 14, which gives a more accurate
tain a reliable estimate for the fitted quantity: the uncertaintyestimate of limit(A1) by fitting sequences of only six data points.
in the data points. All the curves presented in this appendiXhe accuracy of the local fits performed here first increases with the
do contain error bars that reflect the uncertainties in the esrder of the local approximations to the data points giver(As)
timates of Eq.(Al), which come from the uncertainties in (see Fig. 13 and then eventually decreas@ompare this plot to
the data points given bgA2). We evaluated the uncertainty Fig. 14.

~0.05682
~0.05684
~0.05686 ——
~0.05688

Limit estimate
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curves such as those found in Figs. 12—15 can be very sen- The local-fit method described here is not restricted to the
sitive to small errors in a list of numerical values. We haveasymptotic study of the Bethe logarithm that we have used as

not noticed such errors in the&g, values of Tables | and Il

an example. In general, it can yield precise estimates of

while evaluating the asymptotic coefficients reported inquantities that are local to a set of data pdsiuch as limit

Table VIII; this provided an additional check of the values
reported in these tabldsee also Sec. VIl

(A1)], including, for instance, perturbation coefficients of
nonanalytic expansiore.g., Eq.(5)].

[1] F. Birabenet al, in The Hydrogen Atom: Precision Physics of
Simple Atomic Systemedited by S.G. Karshenboim, F.S.
Pavone, F. Bassani, M. Inguscio, and T.W.nleh, Lecture
Notes in Physics Vol. 270Springer, New York, 2001 p. 17.

[2] P.J. Mohr and B.N. Taylor, Rev. Mod. PhyZ2, 351 (2000).

[3] G.W. Erickson and D.R. Yennie, Ann. Phy@\.Y.) 35, 271
(19695.

[4] H.A. Bethe, Phys. Rew/2, 339 (1947).

[5] S.P. Goldman and G.W.F. Drake, Phys. Rev6A 052513
(2000.

[6] G.W.F. Drake and R.A. Swainson, Phys. Rev.44 1243
(1990; the quantity denoted by [lky(nl)/R,] in this reference
is written Ifky(nl)] in the present paper.

[7] S.V. Aksenov, M.A. Savageau, U.D. Jentschura, J. Becher, G.

Soff, and P.J. Mohr, Comput. Phys. Commas0, 1 (2003.
[8] J.C. DeVries, Ph.D. thesis, MIT, 20@2npublishegl

[9] U.D. Jentschura, E.-O. Le Bigot, P.J. Mohr, P. Indelicato, and

G. Soff, Phys. Rev. Let90, 163001(2003.

[10] K. Pachucki, Phys. Rev. A6, 648(1992.

[11] K. Pachucki, Ann. PhysIN.Y.) 226, 1 (1993.

[12] U.D. Jentschura, P.J. Mohr, and G. Soff, Phys. Rev. 18&t.
53(1999.

[13] U. Jentschura and K. Pachucki, Phys. Re%4A1853(1996.

[14] U.D. Jentschura, G. Soff, and P.J. Mohr, Phys. Res6A1739
(1997).

[15] U.D. Jentschura, P.J. Mohr, and G. Soff, Phys. Rev63\
042512(2009).

[16] B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D.
Touabhri, L. Hilico, O. Acef, A. Clairon, and J.J. Zondy, Phys.
Rev. Lett.78, 440(1997.

[17] C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez,
L. Julien, F. Biraben, O. Acef, and A. Clairon, Phys. Rev. Lett.
82, 4960(1999.

[18] C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez,
L. Julien, F. Biraben, O. Acef, J.-J. Zondy, and A. Clairon,
Phys. Rev. Lett86, 4193(2001.

[19] J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and
T.W. Hansch, Phys. Rev. Let84, 3232(2000.

[20] M. Niering et al, Phys. Rev. Lett84, 5496 (2000.

[21] B. de Beauvoir, C. Schwob, O. Acef, L. Jozefowski, L. Hilico,
F. Nez, L. Julien, A. Clairon, and F. Biraben, Eur. Phys. J. D
12, 61 (2000.

[22] P.J. Mohr, G. Plunien, and G. Soff, Phys. Ret@3 227
(1998.

[23] P. Indelicato and P.J. Mohr, Phys. Rev58, 165(1998.

[24] P.J. Mohr, Ann. Phys(N.Y.) 88, 26 (1974.

[25] P.J. Mohr, Ann. Phys(N.Y.) 88, 52 (1974).

[26] U. D. JentschuraQuantum Electrodynamic Radiative Correc-
tions in Bound System®resdner Forschungen: Theoretische

Physik, Band 2(w.e.b. Thelem, Universitaverlag, Dresden,
1999.

[27] E.-O. Le Bigot, P. Indelicato, and P.J. Mohr, Phys. ReG4A
052508(20012).

[28] U.D. Jentschura, P.J. Mohr, G. Soff, and E.J. Weniger, Compult.
Phys. Commun116, 28 (1999.

[29] G.W. Erickson and D.R. Yennie, Ann. Phy@.Y.) 35, 447
(1965.

[30] G.W. Erickson, Phys. Rev. Let27, 780 (1971).

[31] J. Sapirstein, Phys. Rev. Le#t7, 1723(1981).

[32] S.G. Karshenboim, Z. Phys. D: At.,, Mol. Cluste89, 109
(1997.

[33] J. Sapirstein and D. R. Yenni€Quantum Electrodynamics

(World Scientific, Singapore, 1990pp. 560—-672.

[34] H.A. Bethe and E.E. Salpeté&puantum Mechanics of One-and
Two-electron Atom&Spring-Verlag, Berlin, 1957 the quantity
denoted by IfK,(n)/[ZRy]} in this reference is written
In[kg(nl)] in the present paper.

[35] S. Klarsfeld and A. Maquet, Phys. Lett3B, 201(1973.

[36] H.A. Bethe, L.M. Brown, and J.R. Stehn, Phys. R&y, 370
(1950.

[37] J.M. Harriman, Phys. Re\.01, 594 (1956.

[38] C. Schwartz and J.J. Tieman, Ann. Phiis.Y.) 6, 178(1959.

[39] M. Lieber, Phys. Revl74, 2037(1968.

[40] R.W. Huff, Phys. Rev186, 1367(1969.

[41] R.C. Forrey and R.N. Hill, Ann. Phy$N.Y.) 226, 88 (1993.

[42] S.E. Haywood and J.D. Morgan lIl, Phys. Rev.3®, 3179
(1985.

[43] Handbook of Mathematical Functionsdited by M. Abramo-
vitz and I. A. Stegun, 9th edDover, New York, 1972

[44] K. Pachucki, Phys. Rev. A8, 2609(1993.

[45] U.D. Jentschura and K. Pachucki, J. Phys3%\ 1927(2002.

[46] E.H. Wichmann and C.H. Woo, J. Math. Phgs.178 (1961).

[47] L. Hostler, J. Math. Physl1, 2966 (1970.

[48] A.R. Edmonds,Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, NJ, 1957

[49] S. Wolfram, Mathematica—A System for Doing Mathematics
by Computer(Addison-Wesley, Reading, MA, 1988

[50] Certain commercial equipment, instruments, or materials are
identified in this paper to foster understanding. Such identifi-
cation does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily
the best available for the purpose.

[51] FW.J. Olver,Asymptotics and Special Functiofi8cademic
Press, New York, 1974

[52] H. BatemanHigher Transcendental Functio®cGraw-Hill,
New York, NY, 1953, Vol. 1.

[53] E.J. Weniger, Comput. Phys. Ref, 189 (1989.

042101-16



PERTURBATION APPROACH TO THE SELF-ENERGY . . . PHYSICAL REVIEW A 68, 042101 (2003

[54] G.W. Erickson, J. Phys. Chem. Ref. D&a831(1977. [60] U. Feldman, J. Sugar, and P. Indelicato, J. Opt. Soc. Ar@, B
[55] S. Kotochigova, P.J. Mohr, and B.N. Taylor, Can. J. PI3g. 3 (1990.
1373(2002. [61] F. Parente, J.P. Marques, and P. Indelicato, Europhys. 2@t.
437 (1994).

[56] P.J. Mohr and Y.-K. Kim, Phys. Rev. A5, 2727(1992.

[57] P.J. Mohr, Phys. Rev. A6, 4421(1993. [62] D.R. Beck, Phys. Rev. A6, 2428(1992.

[63] J. Sugar, V. Kaufman, P. Indelicato, and W.L. Rowan, J. Opt.

[58] P. Indelicato and P.J. Mohr, Hyperfine Interadtl4, 147 Soc. Am. B6, 1437(1989.
(1998. [64] P. Pyykkq K.G. Dyall, A.G. Csaza, G. Tarczay, O.L. Poly-
[59] E.-O. Le Bigot, U.D. Jentschura, P.J. Mohr, and P. Indelicato ansky, and J. Tennyson, Phys. Rev63 024502(2001).
(unpublished [65] P.J. Mohr, Phys. Rev. Let84, 1050(1975.

042101-17



	Perturbation Approach to the Self-Energy of Non-S Hydrogenic States
	Recommended Citation

	tmp.1515683638.pdf.yjlYV

