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Perturbation approach to the self-energy of non-S hydrogenic states

Eric-Olivier Le Bigot,1,2 Ulrich D. Jentschura,1,2,3 Peter J. Mohr,2 Paul Indelicato,1 and Gerhard Soff3
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We present results on the self-energy correction to the energy levels of hydrogen and hydrogenlike ions. The
self-energy represents the largest QED correction to the relativistic~Dirac-Coulomb! energy of a bound elec-
tron. We focus on the perturbation expansion of the self-energy of non-S states, and provide estimates of the
so-calledA60 perturbation coefficient, which can be viewed as a relativistic Bethe logarithm. Precise values of
A60 are given for manyP, D, F, andG states, while estimates are given for other states. These results can be
used in high-precision spectroscopy experiments in hydrogen and hydrogenlike ions. They yield the best
available estimate of the self-energy correction of many atomic states.

DOI: 10.1103/PhysRevA.68.042101 PACS number~s!: 12.20.Ds, 31.30.Jv, 06.20.Jr, 31.15.2p

I. INTRODUCTION

The recent dramatic progress in high-precision spectros-
copy ~see, e.g., Ref.@1#! has motivated the calculation of
numerous contributions to the energy levels of hydrogen and
hydrogenlike systems. Such spectroscopic experiments test
our understanding of atomic levels and provide precise de-
terminations of fundamental constants@2#; this requires ac-
curate predictions of atomic energies and, in particular, the
calculation of corrections due to quantum electrodynamics
~QED!, the quantum field theory of electromagnetic interac-
tions. The largest correction to the relativistic~Dirac! energy
levels of hydrogen and hydrogenlike ions is provided by the
so-calledself-energycontribution of QED. The self-energy is
a process which modifies the relativistic~Dirac! energy of an
electron, and can be depicted by the following Feynman dia-
gram:

where the double line denotes the electron~bound to the
nucleus! and the wavy line represents the photon emitted and
reabsorbed by the electron. The self-energy correction to en-
ergy levels in hydrogen and hydrogenlike ions can be ex-
pressed as an expansion inZa and ln(Za) ~see, e.g., Ref.
@3#!, whereZ is the nuclear charge number of the nucleus of
the hydrogenlike ion under consideration anda is the fine-
structure constant. Analytic calculations of the~one-loop!
self-energy in bound systems have a long history, starting
from Bethe’s seminal paper@4#, and have since extended
over more than five decades.

The purpose of this paper is to provide good approximate
values of the self-energy correction to the energy levels of
hydrogen and hydrogenlike ions for anyP state and any state
with a higher angular momentum. Only a part of the pertur-
bation expansion of the self-energy of these states is known
analytically. The first two contributions to this expansion that
are not known in closed analytic form are the Bethe loga-
rithm lnk0(nl) and the so-calledA60(nl j ) coefficient of the
self-energy, which can be characterized as arelativistic Be-

the logarithm@see Sec. II, and in particular Eqs.~1!, ~7!, and
~8!#. Here,nl j is the standard spectroscopic notation for an
atomic state. This paper thus contains numerical values of
A60, as well as formulas for estimating both of these impor-
tant quantities for highl ~see Secs. V and VI!.

Very precise numerical values of the Bethe logarithm
ln k0(nl) have been obtained~see, e.g., Refs.@5,6#!, and nu-
merical convergence acceleration techniques@7# can yield
very precise values of this quantity for any atomic statenl.
The estimate~37! that we obtained as a by-product in Sec. VI
should be useful to experiments that use high-l levels for
which no published values of the Bethe logarithm exist~see,
e.g., Ref.@8#!.

Many new values of the relativistic Bethe logarithm
A60(nl j ) have recently been published@9#. Other values have
been obtained previously for someS @10–12# and P states
@13,14#. This paper contains two additional values
@A60(5F5/2) andA60(5F7/2)], as well as details of the proce-
dure that we used in obtaining the values ofA60 in Ref. @9#
and in Table III~see Sec. IV!.

The results of Secs. IV–VI provide an improvement over
the available approximations of the bound-electron self-
energy, over a large range of nuclear charge numbersZ. In
particular, they yield the best available estimates for the self-
energy correction in hydrogen, for all the states for which no
exact~nonperturbative! value of the self-energy has yet been
published ~i.e., all levels, exceptn51 and n52 levels
@12,15#!.

It is important to know accurately the energy~and in par-
ticular the self-energy! of higher angular-momentum states,
because they are used in high-precision spectroscopic mea-
surements@16–21#. States with very high angular orbital
quantum numbersl .30 have been recently used in such
experiments@8#. Further motivation for the present study re-
sults from the need to accurately compare the two ap-
proaches that have been used for the theoretical study of
QED shifts, so as to check their consistency:~i! the analytic
expansion in the parameterZa, mostly used for low-Z sys-
tems, and~ii ! the numerical approach which avoids theZa
expansion and has been used predominantly for the theoret-
ical description of high-Z hydrogenlike ions@22#.

Recently, the most accurate methods implementing a non-
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perturbative calculation of the self-energy@15,23–26# have
been extended by analytic results@27#. Taken together, they
provide access to the self-energy shift of electrons of total
angular momentumj .3/2. This has allowed us to obtain
numerical values of the self-energy, and to use them in
checksof the A60 coefficients presented in Tables I–IV~see
Sec. VII!.

Moreover, general progress in theoretical calculations of
atomic energy levels has been achieved by means of numeri-
cal algorithms@7,26,28# that lead to an accelerated conver-
gence of the angular-momentum series expansion of the
bound-electron relativistic Green function. Such algorithms
are also useful for performing the series summations that we
had to do in order to obtain the values ofA60 presented here
~see Sec. IV!.

Notation and conventions are defined in Sec. II. The
mathematical method used for the semianalytic calculations
of A60 in Ref. @9# is discussed in Sec. III. Details of these
calculations forP, D, F, andG states are presented in Sec. IV
~numerical results are presented in Tables I–IV!. Approxi-
mate formulas for the relativistic Bethe logarithmA60(nl j )
of P andD states with highn are presented in Sec. V. Esti-
mates of the Bethe logarithm lnk0(nl) and of A60(nl j ) as a
function of the orbital quantum numberl are reported in Sec.
VI. We have performed additional checks of the values of
A60 in Tables I–IV, as described in Sec. VII; we also show in
this section that for the states considered here, the inclusion
of A60 in the ~truncated! perturbation expansion of the elec-
tron self-energy@Eq. ~7! below# does indeed improve the
self-energy estimates. A summary of the paper is given in
Sec. VIII. The fitting method that we used in obtaining
asymptotic behaviors of lnk0(nl) and ofA60(nl j ) is described
in the Appendix.

II. NOTATION AND CONVENTIONS

In this section, we define the notation and conventions
used in this paper. We write the~real part of the! one-loop
self-energy shift of an electron in the leveln with orbital
angular momentuml and total angular momentumj as

DESE5
a

p

~Za!4

n3
F~nl j ,Za!mc2, ~1!

whereF(nl j ,Za) is a dimensionless quantity. We use natu-
ral units, in which\5c5m51 (m is the electron mass!. It
is customary in the literature to suppress the dependence ofF
on the quantum numbersn, j, and l and write F(Za) for
F(nl j ,Za).

The quantum numbersl and j can be combined into the
Dirac angular quantum numberk. As a function ofj andl, k
is given by

k52~ l 2 j !~ j 11/2!, ~2a!

i.e.,

k52~ j 11/2! for j 5 l 11/2 ~2b!

and

k5~ j 11/2! for j 5 l 21/2. ~2c!

The quantum numbersj and l can be derived fromk
according to

l 5uk11/2u21/2 ~3!

and

j 5uku21/2, ~4!

i.e., k specifies uniquely bothj and l. The semianalytic ex-
pansion ofF(nl j ,Za) about Za50 for a general atomic
state with quantum numbersn, l, and j gives rise to the
expression@3#

F~nl j ,Za!5A41~nl j !ln@~Za!22#1A40~nl j !

1~Za!A50~nl j !1~Za!2$A62~nl j !ln
2@~Za!22#

1A61~nl j !ln@~Za!22#1GSE~nl j ,Za!%. ~5!

TABLE I. Self-energy coefficientA60 for P states@see Eq.~7!#.
The quoted error is due to numerical integration. As in previous
calculations~see Refs.@13,14#!, certain remaining one-dimensional
integrals involving~partial derivatives of! hypergeometric functions
could only be evaluated numerically.

n P1/2 (k51) P3/2 (k522)

2 20.998 904 402(1) 20.503 373 465(1)
3 21.148 189 956(1) 20.597 569 388(1)
4 21.195 688 142(1) 20.630 945 795(1)
5 21.216 224 512(1) 20.647 013 508(1)
6 21.226 702 391(1) 20.656 154 893(1)
7 21.232 715 957(1) 20.662 027 568(1)

TABLE II. A60 coefficients forD states.

n D3/2 (k52) D5/2 (k523)

3 0.005 551 573(1) 0.027 609 989(1)
4 0.005 585 985(1) 0.031 411 862(1)
5 0.006 152 175(1) 0.033 077 570(1)
6 0.006 749 745(1) 0.033 908 493(1)
7 0.007 277 403(1) 0.034 355 926(1)
8 0.007 723 850(1) 0.034 607 492(1)

TABLE III. A60 coefficients forF states.

n F5/2 (k53) F7/2 (k524)

4 0.002 326 988(1) 0.007 074 961(1)
5 0.002 403 158(1) 0.008 087 020(1)

TABLE IV. A60 coefficients forG states.

n G7/2 (k54) G9/2 (k525)

5 0.000 814 415(1) 0.002 412 929(1)
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This expansion is semianalytic, i.e., it involves powers ofZa
and of ln@(Za)22#. Terms added to the leading order inZa
are commonly referred to as the binding corrections. The
coefficientsA have two indices, the first of which denotes the
power ofZa @including those powers contained in Eq.~1!#,
while the second index denotes the power of the logarithm
ln(Za)22.

The limit asZa→0 of GSE(nl j ,Za) is known to be finite
and is referred to as theA60 coefficient, i.e.,

A60~nl j !5 lim
Za→0

GSE~nl j ,Za!. ~6!

Historically, the evaluation of the coefficientA60 has been
highly problematic. Due to the large number of terms that
contribute at relative order (Za)2 in Eq. ~5! and problems
concerning the separation of terms that contribute to a spe-
cific order in theZa expansion, evaluations are plagued with
severe calculational as well as conceptual difficulties. For
example, the evaluation ofA60(1S1/2) has drawn a lot of
attention for a long time@3,11,29–31#. In general, the com-
plexity of the calculation increases with increasing principal
quantum numbern.

For many states, some of the coefficients in Eq.~5! van-
ish. Notably, this is the case forP states and for states with
higher angular momenta, as a consequence of their behavior
at the nucleus, which is less singular than that ofS states
@specifically, we haveA62(nl j )5A50(nl j )5A41(nl j )50 for
lÞ0; see Refs.@3,29# and references therein#. The fact that
the logarithmic coefficient A71(nl j ) contained in
GSE(nl j ,Za) in Eq. ~5! vanishes forlÞ0 has been pointed
out in Ref.@32#; it is therefore expected thatA7k(nl j )50 for
k.1. For nonzerol, we thus have

F~nl j ,Za!5A40~nl j !1~Za!2@A61~nl j !ln~Za!22

1A60~nl j !#1O„~Za!3
… ~ lÞ0!. ~7!

For the comparison to experimental data, it is useful to note
that the terms in Eqs.~5! and ~7! acquire reduced-mass cor-
rections according to Eqs.~2.5a! and ~2.5b! of Ref. @33#.

The general formula forA40 for a non-S state reads~see,
e.g., Refs.@2,3,33#!

A40~nl j !52
1

2k~2l 11!
2

4

3
ln k0~nl !, ~8!

where the Bethe logarithm lnk0(nl) is an inherently nonrela-
tivistic quantity, whose expression reads@34# ~Sec. 19!

ln k0~nl !5
n3

2~Za!4m
K fU pi

m
~HS2En!

3 lnF2
uHS2Enu

~Za!2m
G pi

mUfL . ~9!

Here, HS is the nonrelativistic Coulomb Hamiltonian
p2/(2m)2(Za)/r , pi are the components of the momentum
operator (i is summed over from 1 to 3!, and the ketuf&
represents the Schro¨dinger wave function of a state with

quantum numbers (n,l ), with associated bound-state energy
En52(Za)2m/(2n2). The Bethe logarithm is spin indepen-
dent and therefore independent of the total angular momen-
tum j for a given orbital angular momentuml; it can be
written as a function ofn andl alone@factors ofZ cancel out
in Eq. ~9!, so that the Bethe logarithm does not depend on
Z]. For the atomic levels under investigation here, the Bethe
logarithm has been evaluated in Refs.@5,6,35–42# ~the re-
sults exhibit varying accuracies!. BecauseA60 involves rela-
tivistic corrections to the coefficientA40, which in turn con-
tains the Bethe logarithm, it is natural to refer toA60 as a
‘‘relativistic Bethe logarithm.’’

A general analytic result for the logarithmic correction
A61 as a function of the bound-state quantum numbersn, l,
and j can be inferred from Eq.~4.4a! of Refs. @3,29# upon
subtraction of the vacuum-polarization contribution con-
tained in the quoted equation. We have

A61~nl j !5
4

3 5 8~12d l ,0!S 32
l ~ l 11!

n2 D
)

m521

3

~2 l 1m!

1d l ,1S 12
1

n2D S 1

10
1

1

4
d j ,l 21/2D

1d l ,0F2
601

240
2

77

60n2
17 ln2

13@g2 ln n1C~n11!#G 6 . ~10!

Here,C denotes the logarithmic derivative of theG function
@43# ~Sec. 6.3! andg is Euler’s constant@43# ~Sec. 6.1.3!. We
may infer immediately

A61~nP1/2!5
1

45S 332
29

n2D , ~11a!

A61~nP3/2!5
2

45S 92
7

n2D , ~11b!

A61~nl j !5

32S 32
l ~ l 11!

n2 D
3 )

m521

3

~2l 1m!

~ l>2!. ~11c!

For a given orbital angular momentuml, the coefficientA61
approaches a constant asn→`. Equation~11c! implies that
A61 is spin independent forl>2, i.e., forD, F, G, . . . states.
Therefore,A61 does not contribute to the fine structure of
these states.
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III. THE e METHOD

In this section, we illustrate the usefulness of the so-called
e method@11,13,14# in bound-state calculations of QED cor-
rections. It is known that relativistic corrections to the wave
function and higher-order terms in the expansion of the
bound-electron propagator in powers of Coulomb vertices
generate QED corrections of higher order inZa ~see, e.g.,
Ref. @44# and references therein!; these terms manifest them-
selves in Eq.~5! in the form of the functionGSE(nl j ,Za),
which summarizes these effects at the order of
a(Za)6m—see Eqs.~1! and ~5!. It is also well known that
for very soft virtual photons, the potential expansion fails
and generates an infrared divergence, which is cut off by the
atomic momentum scale,Za ~see, e.g., Ref.@44# and refer-
ences therein!. This cutoff for theinfrared divergence is one
of the mechanisms that lead to the logarithmic terms in Eq.
~5!.

Thee method is used for the separation of the two differ-
ent energy scales for virtual photons: the nonrelativistic do-
main, in which the virtual photon assumes values of the or-
der of the atomic binding energy, and the relativistic domain,
in which the virtual photon assumes values of the order of
the electron rest mass. We consider here a model problem
with one ‘‘virtual photon,’’ which involves the separation of
the function being integrated into a high- and a low-energy
contribution. This requires the temporary introduction of a
parametere; the dependence one will cancel at the end of
calculation@see Eq.~22! below# when the high- and the low-
energy parts are added together. We have

nonrelativistic domain!e!electron rest mass,

i.e., ~Za!2m!e!m. ~12!

The high-energy part is associated with photon energiesv
.e, and the low-energy part is associated with photon ener-
giesv,e.

In order to illustrate the principles behind thee method,
we discuss a simple, one-dimensional example: the evalua-
tion of

J~Za!5E
0

1~Za!22v

~Za!21v

1

A12v2
dv, ~13!

where the integration variablev may be interpreted as the
‘‘energy’’ of a virtual photon. The integralJ can be explicitly
calculated, so that the perturbation expansion can be
checked:

J~Za!52
p

2
1

2~Za!2 lnF 1

~Za!2
~A12~Za!411!G

A12~Za!4
.

~14!

For uZau,1, this formula is uniquely defined; for other val-
ues ofZa, the analytic continuations of the logarithm and of
the square root have to be performed consistently with the
original definition~13!.

Within the e method, we start by dividing the calculation
of J(Za) into a high-energy partJH(Za,e) and a low-energy
part JL(Za,e), each of which depends on an additional pa-
rametere @that satisfies Eq.~12!#. The sum of the high- and
low-energy contributions, which is

J~Za!5JH~Za,e!1JL~Za,e!, ~15!

does not depend one. Thus, the dependence one should
vanish entirely when we add the high- and low-energy con-
tributions. We may therefore expand both contributionsJH
andJL first in Za, then ine, and then add them up at the end
of the calculation in order to obtain the semianalytic expan-
sion of J(Za) in powers ofZa and ln(Za).

Let us first discuss the ‘‘high-energy part’’ of the calcula-
tion. It is given by the expression

JH~Za,e!5E
e

1 ~Za!22v

~Za!21v

1

A12v2
dv, ~16!

where it is important to note in particular the lower integra-
tion limit ( e). For v.e, we may expand

~Za!22v

~Za!21v
5211

2~Za!2

v
1O„~Za!4

… ~17!

@see Eq.~12! with m51]. Each corresponding term of Eq.
~16! can be integrated, with result

JH~Za,e!5S 2
p

2
1••• D12~Za!2F lnS 2

e D1•••G
1O„~Za!4

…, ~18!

where the ellipsis represents terms that vanish ase→0. It is
sufficient to only include terms that do not vanish ase→0,
to each order inZa, because the sumJ in Eq. ~15! does not
depend one. Moreover, this makes the calculation more
manageable. The full cancellation of the dependence on lne
will be explicit after we evaluate the ‘‘low-energy part.’’

The contribution of the low-energy part (0,v,e) reads

JL~Za,e!5E
0

e~Za!22v

~Za!21v

1

A12v2
dv, ~19!

where the upper limit of integration depends one. For v
,e, we use an expansion that avoids the infrared diver-
gences that we encountered in Eq.~17!:

1

A12v2
511

v2

2
1

3

8
v41•••, ~20!

which leads to aZa expansion of the low-energy part. We
obtain forJL :

JL~Za,e!5~••• !12~Za!2F ln
e

~Za!2
1•••G

1O„~Za!4lnj~Za!…, ~21!
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where the ellipsis again represents terms that vanish ase
→0, and wherej is some integer.

When the high-energy part~18! and the low-energy part
~21! are added, the logarithmic divergences ine cancel, as it
should, and we have

J~Za!5JH~Za,e!1JL~Za,e!

52
p

2
12~Za!2~ ln@~Za!22#1 ln 2!

1O„~Za!4lnj~Za!… ~22!

~for somej ), which is consistent with Eq.~14!. We note the
analogy of the above expression with the leading-order terms
of theZa expansion of the functionF(nl j ,Za) given in Eq.
~7! for lÞ0 ~terms associated to the coefficientsA40, A61,
andA60). In an actual Lamb shift calculation, the simplifica-
tions observed between terms containinge are crucial
@13,14#.

In this model example, the epsilon method allowed us to
obtain Eq. ~22! with minimal effort. For comparison, the
reader may consider Appendix A of Ref.@45#, which illus-
trates the cancellation ofe in higher orders of theZa expan-
sion, using a different example.

IV. CALCULATION OF SELF-ENERGY COEFFICIENTS

This section, along with the preceding one, gives details
of the methods we used in order to obtain the values of the
A60 coefficient in Tables I–IV~see also Ref.@9#!. The pur-
pose of our calculations is to provide data for the self-energy
coefficients up to and including the relative order (Za)2 @see
Eq. ~7!#; for the states of interest here~non-S states! this
corresponds to the coefficientsA40, A61, andA60. Equation
~8! is the well-known general formula for the coefficient
A40. The coefficientA61 can be found in Eq.~10!, with spe-
cial cases treated in Eqs.~11a!–~11c!. The remaining non-
logarithmic termA60 is by far the most difficult to evaluate,
and the first results for any state with orbital angular-
momentum quantum numberl>2 were recently obtained in
Ref. @9# by using the methods described in this section.

As explained in detail in Refs.@11,13,14#, the calculation
of the one-loop self-energy falls naturally into a high- and a
low-energy part (FH and FL , respectively!. In Sec. III, we
illustrated this procedure and the introduction of the scale-
separation parametere for the photon energy. According to
Ref. @13# @Eqs. ~39!–~43!#, the contributions to the low-
energy part can be separated naturally into the nonrelativistic
dipole and the nonrelativistic quadrupole parts, and into rela-
tivistic corrections to the current, to the Hamiltonian, to the
binding energy, and to the wave function of the bound state.
We follow here the approach outlined in Refs.@13,14#, with
some modifications.

One main difference as compared to the evaluation
scheme described previously concerns the nonrelativistic
quadrupole~nq! part. It is given by a specific matrix element
@see the definition ofPnq in Ref. @13# Eq. ~39!#, which has to
be evaluated for each atomic state and averaged over the
angles of the photon wave vectors:

E dVk

4p
Pnq5E dVk

4p

dT,i j

6m

3F K fUpieik•r
1

HS2~E2v!
pje2 ik•rUf L

2 K fUpi
1

HS2~E2v!
pjUf L G , ~23!

where the transversed function is given by

dT,i j 5d i j 2
ki kj

k2
.

The dipole interaction obtained by the replacement

exp~ ik•r!→1

is subtracted; it leads to a lower-order contribution. The next
term in the Taylor expansion of the exponential reads

E dVk

4p

dT,i j

6m F K fUpi~k•r!
1

HS2~E2v!
pj~k•r!Uf L

2 K fUpi
1

HS2~E2v!
pj~k•r!2Uf L G . ~24!

This representation makes an evaluation in coordinate space
possible. However, an evaluation of this expression leads to a
rather involved angular-momentum algebra. Specifically, we
employ a well-known angular-momentum decomposition of
the coordinate-space hydrogen Green function@46#

G~r1 ,r2 ,E2v!5 (
l 8,m

gl 8~r 1 ,r 2 ,n!Yl 8,m~ r̂1!Yl 8,m
* ~ r̂2!,

~25!

with E2v52a2m/(2n2) and @47#

gl 8~r 1 ,r 2 ,n!5
4m

an S 2r 1

an D l 8S 2r 2

an D l 8
e2(r 11r 2)/(an)

3 (
k50

` Lk
2l 811S 2r 1

an DLk
2l 811S 2r 2

an D
~k11!2l 811~ l 8111k2n!

, ~26!

wherea51/(Zam), (k)c is the Pochhammer symbol, andL
denotes associated Laguerre polynomials@43#. For a refer-
ence stateuf& of orbital angular momentuml, we obtain in
Eq. ~24! nonzero contributions from Green-function compo-
nents~25! with l 85 l 22,l 21,l ,l 11,l 12. They can be ob-
tained by a straightforward, but tedious, application of
angular-momentum algebra~see, e.g., Ref.@48#!.

As in previous calculations@see also Ref.@13# @Eqs.~18!
and~19!# and@14# @Eqs.~55!–~58!##, we obtain for the high-
energy part of all atomic states the general structure
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FH~nl j ,Za!52
1

2k~2l 11!
1~Za!2

3FK2
C
e

2A61 ln~2e!1O~e!G1••• ,

~27!

whereK is a constant and the ellipsis denotes higher-order
terms@in Za and ln(Za)]. As observed in Sec. III, we may
suppress terms that vanish in the limite→O @terms of the
form O(e) in the (Za)2 term in Eq. ~27! above#. These
terms cancel when the high- and low-energy parts are added.

Together with the constant term2A61 ln 2, the constantK
contributes toA60. C is the coefficient of the 1/e divergence;
the term2C/e cancels when the high- and low-energy parts
are added. BothK andC are state dependent and vary with
n, j ,l . As in Refs.@13# @Eqs. ~56! and ~57!# and @14# @Eqs.
~89!–~92!#, the low-energy part, for all states under investi-
gation, has the general structure

FL~nl j ,Za!52
4

3
ln k0~nl !

1~Za!2FL1
C
e

1A61 lnS e

~Za!2D 1O~e!G
1••• , ~28!

where lnk0(nl) is the Bethe logarithm@see Eq.~9!# and the
ellipsis denotes higher-order terms. The cancellation of the
divergence ine between Eqs.~27! and ~28! is obvious. The
constantL, which is state dependent~a function ofn, j ,l ),
represents the low-energy contribution toA60 and can be
interpreted as the relativistic generalization of the Bethe
logarithm. In terms of the general expressions~27! and~28!,
A60 is therefore given by

A605K2A61 ln 21L. ~29!

Our improved results forA60 coefficients rely essentially on
a more general code for the analytic calculations, written in
the computer-algebra packageMATHEMATICA @49,50#, which
enables the corrections to be evaluated semiautomatically.
Intermediate expressions with some 200 000 terms are en-
countered, and the complexity of the calculations sharply
increases with the principal quantum numbern and, as far as
the complexity of the angular-momentum algebra is con-
cerned, with the orbital angular quantum number of the
bound electron.

Of crucial importance was the development of conver-
gence acceleration methods which were used extensively for
the evaluation of remaining one-dimensional integrals, which
could not be done analytically. These integrals are analogous
to expressions encountered in previous work@see Eqs.~36!,
~47!, and~48! of Ref. @13# and Eqs.~80!–~84! of Ref. @14##.
The numerically evaluated contributions involve slowly con-
vergent hypergeometric series and, in more extreme cases,
infinite series over partial derivatives of hypergeometric
functions, and generalizations of Lerch’sF transcendent

@51,52#. As a result of the summation overl 8 in Eq. ~25!,
after performing radial integrals, two specific hypergeomet-
ric functions enter naturally into the expressions for the
bound-state matrix elements that characterize the one-loop
correction@see, e.g., Eqs.~80! and~81! of Ref. @14##. One of
these functions is given by

F1~n,t !52F1S 1,2nt,12nt,S 12t

11t D
2D , ~30!

where the integration variablet is in the range 0–1 andn is
the bound-state principal quantum number (2F1 denotes the
hypergeometric function—see, e.g., Chap. 15 in Ref.@43#!.
For t.0, the power-series expansion ofF1 is slowly con-
vergent,

F1~n,t !5~nt!(
k50

` S 12t

11t D
2k

nt2k
. ~31!

The series is nonalternating. In order to accelerate the con-
vergence in the rangetP(0,0.05), we employ the combined
nonlinear-condensation transformation@7,28#. The other hy-
pergeometric function that occurs naturally in our calcula-
tions is

F2~n,t !52F1S 1,2nt,12nt,2S 12t

11t D D . ~32!

For 0,t,0.05, we accelerate the convergence of the alter-
nating power series

F2~n,t !5~nt!(
k50

` S 2
12t

11t D
k

nt2k
~33!

via thed transformation@53# @Eq. ~8.4-4!#. The convergence
acceleration leads to a much more reliable evaluation of the
remaining numerical integrals which contribute toA60 ~but
cannot be expressed in closed analytic form!. As a by-
product of our investigations, we obtained through this~in-
dependent! method Bethe logarithms which are consistent
with the precise results of Ref.@5#. Here, we restrict the
accuracy to 24 figures and give results forP states:

ln k0~2P!520.030 016 708 630 212 902 443 676~1!,

ln k0~3P!520.038 190 229 385 312 447 701 163~1!,

ln k0~4P!520.041 954 894 598 085 548 671 037~1!,

ln k0~5P!520.044 034 695 591 877 795 070 318~1!.
~34!

These results, which test the numerical methods that we em-
ployed, are in agreement with other recent calculations
@5,6,41,42#.

The main results of this paper concerning theA60 coeffi-
cients are given in Tables I–IV, with an absolute precision of
1029. In addition, we give explicit expressions for the low-
and high-energy parts of the self-energy, for the states with

LE BIGOT et al. PHYSICAL REVIEW A 68, 042101 ~2003!

042101-6



n55 under investigation@see Eqs.~27! and ~28! and Table
V#. They may be helpful in an independent verification of
our calculations. Note that theG7/2 and G9/2 states involve
the most problematic angular-momentum algebra of all
atomic states considered here.

For someP states~see Table I!, the values ofA60 reported
here are four orders of magnitude more accurate than previ-
ous results@13,14#, due to the improved numerical algo-
rithms. For the 3P1/2 state, the numerical value for theA60
coefficient of Table I differs from the previously reported
result@14# by more than the numerical uncertainty quoted in
Ref. @14#, whereas agreement with previous results@13,14# is
obtained in the case of 2P1/2 and 4P1/2 states. The discrep-
ancy for A60(3P1/2) is on the level of 531024 in absolute
units, which corresponds to roughly 2 Hz~in frequency
units! on the self-energy correction in atomic hydrogen. The
computational error in Ref.@14# was caused by numerical
difficulties in one of the remaining one-dimensional integrals
involving the hypergeometric functions~30! and~32!, which
could not be evaluated analytically. The numerical difficul-
ties encountered in previous calculations due to slow conver-
gence of the integrals are essentially removed by the conver-
gence acceleration techniques.

For some states, rather severe numerical cancellations are
observed between the high- and low-energy contributions to
the self-energy, as well as between the different contributions
to the low-energy part. This intriguing observation is docu-
mented in Tables VI and VII, using the 5G7/2 state as an
example. Note that these numerical cancellations go beyond
the required exact, analytic cancellation of the divergent con-
tributions which depend on the scale-separation parametere.

V. A60 FOR HIGHER- n STATES

This section contains approximate formulas for theA60
coefficients ofP and D states, for principal quantum num-
bers n, which go beyond those of Tables I and II. These

tables contain enough values ofA60(nl j ) for extrapolations
to be made. We represent the asymptotic behavior of
A60(nl j ) asn→` as

A60~nl j !5A3~n,l j !1OS 1

n3D , ~35a!

where

A3~n,l j !5a0~ l j !1
a1~ l j !

n
1

a2~ l j !

n2
. ~35b!

Such an asymptotic behavior is motivated, for any non-S
state, by its similarity to the functional form of the self-
energy coefficientA61 in Eq. ~7!—see Eq.~11!. The values
that we obtained for the coefficientsai( l j ) can be found in
Table VIII. The fitting method is described in the Appendix.

The approximationA3(n,l j ) to A60(nl j ) is depicted in
Fig. 1, for P and D states. According to the graphs in this
figure, theO(1/n3) contribution in Eq.~35a! is much smaller
than the uncertainty inA3, which comes from the uncertain-
ties in the coefficients of Table VIII.

The coefficientsai of Eq. ~35b! given in Table VIII can be
useful to spectroscopy experiments that involve electronic
levels with principal quantum numbers that are higher than

TABLE V. According to Eqs.~27! and~28!, the high- and low-
energy parts can be cast into a general form involving the termsC,
K, andL. The coefficientA60 can be expressed in terms ofK, A61,
andL according to Eq.~29!. Here, we present analytic results for
the termsC, A61, and K, and numerical results forL ~for states
with n55). The results forA61 can be inferred from Eqs.~10!–
~11c!. For l>2, we observe thatA61 are spin independent and that
C5A61.

C, K, andL coefficients for states withn55
State C A61 K L
5P1/2

292
1125

796
1125

20129
67500 21.023 991 781(1)

5P3/2
292

1125
436

1125
199387
540000 20.747 615 653(1)

5D3/2
92

7875
92

7875 2
35947

3780000 0.023 759 683(1)
5D5/2

92
7875

92
7875

3097
157500 0.021 511 798(1)

5F5/2
2

1125
2

1125 2
2657

1102500 0.006 045 397(1)
5F7/2

2
1125

2
1125

774121
211680000 0.005 662 248(1)

5G7/2
2

4725
2

4725 2
4397

6048000 0.001 834 827(1)
5G9/2

2
4725

2
4725

269
283500 0.001 757 471(1)

TABLE VI. As explained in Refs.@13,14#, the low-energy con-
tributions to A60 naturally separate into the following terms: the
nonrelativistic quadrupole partFnq @13# @Eq. ~39!#, the relativistic
corrections to the currentFdy @13#, @Eq. ~40!#, relativistic correc-
tions to the HamiltonianFdH @13# @Eq. ~41!#, and relativistic cor-
rections to the bound-state energyFdE @13# @Eq. ~42!# and to the
wave functionFdf @13# @Eq. ~43!#. This classification suggests that
it is natural to refer to the low-energy contributionL as a relativistic
Bethe logarithm. The total contribution toA60 of the low-energy
part, which reads 0.001 834 827(1), is roughly five times smaller
than the largest individual contribution~from FdH), due to cancel-
lations.

Contributions to the low-energy part (5G7/2)

A60 contribution due toFnq 0.002 875 8309(5)
A60 contribution due toFdy 20.001 083 1094(5)
A60 contribution due toFdH 20.008 917 7821(5)
A60 contribution due toFdE 0.004 920 5560(5)
A60 contribution due toFdf 0.004 039 3321(5)
A60 ~see entry forL in Table V! 0.001 834 827(1)

TABLE VII. For the 5G7/2 state, an additional numerical can-
cellation occurs when the finite contributions toA60 originating
from the low-energy part~see the ninth row of Table V! and the
high-energy part are added according to Eq.~29!. The high-energy
contribution isA60(FH)5K2A61ln 2, and the low-energy contribu-
tion is A60(FL)5L.

A60(FH) 20.001 020 413
A60(FL) 0.001 834 828(1)
A60 0.000 814 415(1)
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those of Tables I and II. In fact, the self-energy of the elec-
tron of a hydrogenlike ion can be estimated through Eqs.~7!,
~8!, ~11!, and~35!, with A3 defined with the values of Table
VIII. Hydrogen has been and will be the subject of extremely
precise spectroscopy experiments, which now approach the
level of 1 Hz of uncertainty in transition frequencies. The
uncertainty in the self-energy~1! which comes from the un-
certainties in the coefficients of Table VIII through Eqs.~7!
and ~35! is comparable to the current experimental limit. In
fact, the uncertainties inA3 in Eq. ~35b! contribute to the
self-energy less than62 Hz for P1/2 states withn.7, less
than61.6 Hz forP3/2 states withn.7, less than60.12 Hz
for D3/2 states withn.8, and less than60.12 Hz for D5/2
states withn.8 ~precise values ofA60 for lower values ofn
can be found in Tables I and II!.

Moreover, the coefficients of Table VIII can be useful for
theoretical calculations. In fact, future values ofA60 for P
and D states can be checked against the estimates provided
by A3 in Eq. ~35b!—see also the curves of Fig. 1.

VI. APPROXIMATIONS FOR A60 AND FOR THE BETHE
LOGARITHM

In addition to studying the dependence ofA60(nl j ) on n,
as we did in the preceding section forP and D states, it is
interesting to analyze the behavior ofA60(nl j ) as a function
of l, for j 5 l 21/2 and j 5 l 11/2. We conjecture that
A60(n̄l j ), for n̄5 l 11 and j 5 l 61/2, decreases as

A60~ n̄l j ! ;
l→`c~ j 2 l !

l k
with k>3, ~36!

where we probably havek54 or k55 @c(1/2) and
c(21/2) are two unspecified numbers#. Form ~36! is moti-
vated in this section.

We have also studied the asymptotic behavior of the Be-
the logarithm lnk0(n̄l) because this is a quantity similar to the
‘‘relativistic Bethe logarithm’’A60 and it yields a large con-
tribution to the self-energy@see Eqs.~7! and~8!#. We show in
this section that the Bethe logarithm lnk0(n̄l), where n̄5 l
11, appears to behave asymptotically asl 23. This result
differs from the l 27/2 asymptotic behavior of lnk0(n̄l) de-
duced from Eq.~B5! in Ref. @54# ~p. 845!. Extrapolations of
the Bethe logarithm lnk0(nl) as a function ofn have been
obtained through the method described in the Appendix, and
used in Ref.@55# for S, P, andD states (l 50 –2).

We also postulate that the Bethe logarithm lnk0(n̄l), where
n̄5 l 11, can be expanded in powers ofl 21 aboutl 5`. In
order to find the first five coefficients of such an expansion,
we used the fitting procedure described in the Appendix. The
resulting approximation reads

l 3ln k0~ n̄l !.S 20.056 853~2!1
0.024 78~4!

l
1

0.0387~8!

l 2

1
20.114~6!

l 3
1

0.16~2!

l 4 D , ~37!

where n̄5 l 11 and the neglected contribution is of order
l 25. This approximation should be valid forl→`; neverthe-
less, it yields values of the Bethe logarithm that are both
precise~see Fig. 2! and compatible with all the values of
ln k0(n̄l) for l 53, . . . ,19 ~taken from Ref.@6#!. For the l
>20 levels of hydrogen, the uncertainty in the result of ap-
proximation ~37! is negligible, when compared to the best
experimental uncertainty in transition frequency measure-
ments~about 1 Hz@1#!.

Moreover, we suggest that the orders of magnitude of the
self-energy coefficientA60(nl j ) and of the Bethe logarithm
ln k0(nl) do not depend on the principal quantum numbern,
i.e., the order of magnitude of a coefficientA60(nl j ) is given
by the order of magnitude ofA60(n̄l j ), wheren̄5 l 11 ~and
similarly for the Bethe logarithm!. For A60, this behavior is
a generalization of what is observed forP, D, F, andG states
in Tables I–IV. For the Bethe logarithm, the fact that

TABLE VIII. The asymptotic behavior ofA60(nl j ) asn→` can
be described by an expansion in 1/n. The following table contains
the first coefficients of such an expansion, as defined in Eq.~35!.
The approximate values ofA60(nl j ) that can be directly deduced
from this table and from Eq.~35b! are the best available values of
A60 for P andD states, except for the states that are represented in
Tables I and II. These results are depicted in Fig. 1.

State a0 a1 a2

P1/2 21.249(9) 0.0(2) 0.87(45)
P3/2 20.69(2) 0.15(5) 0.25(25)
D3/2 0.011(1) 20.032(7) 20.05(9)
D5/2 0.034(2) 0.025(5) 20.18(4)

FIG. 1. These graphs show exact and approximate values of the
self-energy coefficientA60—see Eq.~7!. Exact values are repre-
sented by dots and can be found in Tables I and II. The two curves
of each graph represent the upper and lower limits of the approxi-
mation toA60 provided byA3 in Eqs.~35!, by taking into account
the uncertainties in the coefficients of Table VIII. For levels in
hydrogen with principal quantum numbern>10, the uncertainty in
A60 deduced from these curves contributes to the uncertainty in the
electron self-energy~1! by less than 2 Hz.~The use of 1/n as the
abscissa allows all large principal quantum numbersn to be repre-
sented in the graphs.!
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ln k0(nl) and lnk0(n̄l) have the same order of magnitude can
be observed for states withl ,n<20 by inspecting the re-
sults of Ref.@6#.

The expressions~36! and~37! for the asymptotic behavior
of A60(n̄l j ) and lnk0(n̄l), wheren̄5 l 11, could thus be used
for estimating the order of magnitude of the self-energy with
the help of Eqs.~7!, ~8!, and~11!. Estimating the self-energy
correction~1! can be useful in high-precision spectroscopy
experiments with large-l levels. Thus, for instance, a recent
experiment@8# required evaluating the self-energies of circu-
lar (n5 l 11) states of orbital quantum numberl .30. On
the theoretical side, future calculations ofA60(nl j ) and
ln k0(nl) can be checked against the asymptotic behaviors of
A60(n̄l j ) and lnk0(n̄l) which are described above.

Since the order of magnitude ofA60(nl j ) does not appear
to depend onn, it is natural to represent it~for fixed l and j )
by the order of magnitude of either limn→`A60(nl j )—largest
possiblen— or A60(n̄l j ), where n̄5 l 11 is the smallestn
possible for the angular-momentum quantum numberl. We
chose the latter possibility for two reasons. First, small-n
values ofA60(nl j ) are available~see Tables I–IV!. Second,
future values ofA60(nl j ) for higher angular quantum num-
bers l are likely to be obtained first for states wheren5 l
11, which is the smallestn possible for a given angular-
momentum quantum numberl. In particular, such states have
simpler radial wave functions~the number of terms in the
radial wave function of a state increases withn2 l ). And
finally, circular states (n5 l 11) are relevant to high-
precision spectroscopy experiments~see, e.g., Ref.@8#!,
whereasn5` states are unphysical.

As mentioned above, we expect an asymptotic behavior
of the form l 2k, with k integer, for A60(n̄l j ) and for the
Bethe logarithm lnk0(n̄l). Such a functional form is moti-
vated by the fact that all theAik(nl j ) coefficients of the
self-energy functionF in Eq. ~5! can be expanded in power
series of 1/n and l 21, except maybe for the two coefficients
related to this section,A60 and A40, where the latter is a
function of the Bethe logarithm@see Eq.~8!#. ~We suppose
thatA60 andA40 can also be expanded in such a series.! This

can, for instance, be checked with the formulas forAik(nl j )
reviewed in Ref.@2# ~p. 468! with the help of Eq.~10! for
A61(nl j ), where C(n11) can be expanded in powers of
1/(n11) @43# ~Sec. 6.3.18!.

The l 23 behavior of the Bethe logarithm lnk0(n̄l), where
n̄5 l 11, is suggested by Fig. 2. The points of this graph,
which represent

l 3ln k0~ n̄l !, ~38!

appear to converge toward a limit (.20.057) asl 21→0.
We checked thel 23 behavior deduced from the study of Eq.
~38! by calculating the slope of a log-log plot of the Bethe
logarithm lnk0(n̄l) ~with numerical values taken from Ref.
@6#!. The result, shown in Fig. 3, indicates that the Bethe
logarithm does indeed behave asymptotically asl 23; this
coincides with the conclusion from Fig. 2.

It is possible to use the procedure depicted in Fig. 3 to
estimate the integer exponentk of an asymptotic behavior
l 2k for the relativistic Bethe logarithmA60(n̄l j ), where n̄
5 l 11 and j 5 l 61/2. In fact, it is reasonable to use the
Bethe logarithm lnk0(n̄l) as a guide for studying therelativ-
istic Bethe logarithmA60. Thus, the procedure depicted in
Fig. 3 was applied to the self-energy coefficientA60(n̄l j ); we
obtained the asymptotic behavior presented at the beginning
of this section, and in particular in Eq.~36!. The graphs
supporting Eq.~36! are given in Fig. 4 for states withj 5 l
11/2, and in Fig. 5 for states withj 5 l 21/2. Each of these

FIG. 2. Comparison between exact values ofl 3ln k0(n̄l) ~dots!
and the truncated asymptotic expansion of Eq.~37! ~where the up-
per and lower limits are represnted by the two curves!, where

ln k0(n̄l) is the Bethe logarithm, andn̄5 l 11. The numerical values
of the Bethe logarithms used in this graph@6# are compatible with
the values deduced from Eq.~37!, which are in the area between the
two curves. The fact that the data points seem to converge toward a
finite value (.20.057) asl 21→0 supports the conjecture of an

l 23 asymptotic behavior of the Bethe logarithm lnk0(n̄l).

FIG. 3. Upper graph: log-log plot of the Bethe logarithm

ln k0(n̄l), wheren̄5 l 11. Lower graph: slope between two succes-
sive points of the log-log plot. The limit slope of23 as l→`
observed in the lower graph indicates that the Bethe logarithm

ln k0(n̄l) behaves asymptotically asl 23. This confirms what is ob-
served in Fig. 2.~The abscissa of the points in the lower graph is
chosen so as to produce a graph from which the limit slope of the
upper graph asl→` can be easily deduced.!
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graphs uses only three values ofA60 (D, F, andG states!;
even though this is a relatively small number of values com-
pared to the number of available values of the Bethe loga-
rithm, the behavior of the first few data points in Fig. 3
justifies using only a few small-l values in order to predict
the asymptotic behavior ofA60(n̄l j ) for l→`.

The values of theA60 coefficient ofS and P states were
not used in obtaining Eq.~36!, because it is convenient to
treat the orders of magnitude of theA60 coefficient of these
states separately from the orders of magnitude of higher-l
states; Fig. 6 illustrates this point. We note that the self-
energy coefficientA61 also exhibits an exceptional behavior
for S and P states@see, e.g., Eq.~4.4a! in Ref. @3##. As an
additional consequence, estimating the coefficientc of the
asymptotic form ofA60 in Eq. ~36! would require the use of
states with orbital angular-momentum quantum numberl
>2 (D, F, etc.!.

The possible values of the exponentk in Eq. ~36! deduced
from both the graphs of Figs. 4 and 5 are compatible with
each other (k>3 with, probably,k54 or k55). It is indeed
expected that the asymptotic form ofA60(n̄l j ) be the same
for j 5 l 11/2 andj 5 l 21/2, as can be seen from the numeri-
cal values forD, F, andG states found in Tables II–IV. More
precise estimates of the asymptotic exponentk in Eq. ~36!
can be obtained through the procedure we used in Figs. 4 and
5, as soon as additional values ofA60(n̄l j ) with n̄5 l 11 are
available.

According to the results of this section, the ‘‘relativistic

Bethe logarithm’’ A60(n̄l j ) decreases at least as fast~and
probably one or two powers faster!, as a function ofl, as the
Bethe logarithm lnk0(n̄l). Such a behavior is also found in
the ~Dirac-Coulomb! energy of hydrogen and hydrogenlike
ions. Thus, the Dirac-Coulomb energy of an electron bound
to a nucleus of charge numberZ is @see, e.g.,@2#, p. 466#

En j5F11
~Za!2

~n2d!2G21/2

, ~39!

FIG. 4. Upper graph: log-log plot of the self-energy coefficient

A60(n̄l j ), where n̄5 l 11 and j 5 l 11/2. Lower graph: slope be-
tween two successive points of the log-log plot~solid line! and
extrapolation tol→` ~dashes!. By analogy with the graphs simi-
larly obtained for the Bethe logarithm in Fig. 3, we conclude that

for j 5 l 11/2, A60(n̄l j ) behaves asymptotically asl 2k with k>3
and, probably,k54 or k55. The values ofA60 are taken from
Tables II–IV.

FIG. 5. Upper graph: log-log plot of the self-energy coefficient

A60(n̄l j ), where n̄5 l 11 and j 5 l 21/2. Lower graph: slope be-
tween two successive points of the log-log plot~solid line! and
extrapolation tol→` ~dashes!. By analogy with the graphs simi-
larly obtained for the Bethe logarithm in Fig. 3, we conclude that

for j 5 l 21/2, A60(n̄l j ) behaves asymptotically asl 2k with k>3
and, probably,k54 or k55. The values ofA60 are taken from
Tables II–IV.

FIG. 6. This graph shows values of the self-energy coefficients

A60(n̄l j ), wheren̄5 l 11, as a function of the Dirac quantum num-
ber k, wherek is defined in Eq.~2!. The large valueA60(1S1/2).
231 is not represented here. This plot shows that forSandP states
(k522, 21, and 1!, the A60 coefficient exhibits an exceptional
behavior; such an exceptional behavior is also found in the self-
energy coefficientA61 in Eq. ~10!, which is known analytically.
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where

d5~ j 11/2!2A~ j 11/2!22~Za!2.

According to Eq.~39!, an electron in a circular staten̄l j with
j 5 l 11/2 ~and n̄5 l 11) has an energy

En̄,l 1(1/2)5A12@Za/~ l 11!#2. ~40!

In the Taylor expansion~in Za) of this energy, the
asymptotic behavior of the coefficient of (Za)2k is given by
l 22k ~this conclusion also holds for circular staten̄l j with j
5 l 21/2). Thus, for circular states, successive relativistic
corrections to the nonrelativistic energy of a bound electron
fall off faster and faster with the orbital quantum numberl,
with two additional powers ofl 21 for each order in (Za)2. If
this rule applies to the coefficients of the self-energy expan-
sion ~7!, the asymptotic form ofA60(n̄l j ) as l→` should be
l 24; in fact, the lower-order coefficientA40(n̄l j ) decreases as
l 22, as can be seen in Eq.~8!. On the other hand, since
A60(nl j ) can be viewed as a relativistic correction to the
Bethe logarithm, applying the above rule yields an
asymptotic form inl 25 for A60(n̄l j ), since the Bethe loga-
rithm behaves asl 23, as described in this section. These
observations are fully compatible with the graphs of Figs. 4
and 5, from which the asymptotic form~36! of A60(n̄l j ) was
deduced~with an exponentk probably equal to 4 or 5!.

VII. CHECKS OF THE A60 COEFFICIENTS

We have checked our analytic results forA60 ~cf. Tables
I–IV ! by an independent method: the analytic results were
compared to values deduced from nonperturbative, numeri-
cal calculations of the self energy~1!. We have used the
numerical self-energy values of Refs.@15,23,27,56–58#, as
well as new values@59#, which extend the results of Ref.@27#
to smaller nuclear charge numbersZ ~to Z between 10 and
25!. In most cases, the checks that we detail belowconfirm
the values ofA60 reported in Tables I–IV to a relative preci-
sion of about 15%. The few exceptions are the following. For
2P states, the numerical values of the self-energy confirm
the results of Table I to about 1%. FornD3/2 states withn
53, . . . ,8, the nonperturbative self-energy results yield
A60(nD3/2)50.005(10), in agreement with the results of
Table II. And finally, we did not checkA60(8D5/2) in Table II
by using nonperturbative self-energy values because no such
values are available for the 8D5/2 state. However, as depicted
in Fig. 1, the value ofA60(8D5/2) reported here appears to fit
well within the series ofA60(nD5/2) values forn53, . . . ,7
~see Table II!.

The first check that we applied consisted of comparing the
numerical, exact results forF to two of its successive ap-
proximations. The first approximation,F (2)(Za), includes
the two dominant and already-known coefficientsA40 ~8! and
A61 ~10! of expansion~7!:

F (2)~Za!5A401~Za!2A61ln~Za!22, ~41!

and the second approximation,F (3), includes in addition the
next-order contribution reported in this paper:

F (3)~Za!5A401~Za!2@A61ln~Za!221A60#. ~42!

For a given electronic levelnl j , one expects that for lowZ,
the curve of the higher-order approximationF (3)(Za) be
closer to the curve ofF(Za) than F (2)(Za). In order to
check this, we plotted the quantity

I ~Za!5 lnUF~Za!2F (3)~Za!

F~Za!2F (2)~Za!
U , ~43!

which should go to2` as Z→0, as can be seen from Eq.
~7!. In Eq.~43!, the purpose of the logarithm is only to obtain
more legible graphs; a value ofI lower than zero indicates
that includingA60 in the approximation ofF improves the
lower-order approximation. For the states of Tables I–IV,
graphs of Eq.~43! are compatible with their expected behav-
ior @ I (Za) is negative forZ sufficiently close to zero, and is
consistent with a2` limit #. Figures 7 and 8 show this be-
havior for two electronic states.

Moreover, the improvement provided by the inclusion of
A60 in the approximation forF becomes greater as the total
angular momentumj increases: for givenn and Z, the im-
provement function~43! decreases asj increases; this behav-
ior can observed by comparing Figs. 7 and 8. Similarily, the
range ofZ for which approximationF (3) is better thanF (2)

increases with increasingj. In the worst of the cases consid-

FIG. 7. ~a! shows exact and approximate values of the~scaled!
self-energyF of a 2P1/2 electron@see Eq.~1!#. Exact values are
given on the solid line. The two-coefficient approximation~41! is
represented by long dashes. The three-coefficient approximation
~42! uses the value ofA60(2P1/2), which we provide in Table I, and
is indicated by short dashes.~b! displays the improvement provided
by the inclusion ofA60 in the self-energy approximation, as mea-
sured by the functionI in Eq. ~43!; negative values ofI indicate that
including A60 improves the approximation.
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ered here (j 51/2), approximationF (3) is better thanF (2) up
to Z.25. As shown in Fig. 8, for a high-j level such as
5G7/2, the higher-order approximationF (3) is better than
F (2) even up toZ5110.

The second check consisted of estimatingA60 from the
numerical values of the self-energy~1!. For all the electronic
levels nl j studied here~except for 8D5/2), we have plotted
the functionGSE(nl j ,Za) of Eq. ~5!; this is made possible
by the fact that all the coefficients of Eq.~5! are ~analyti-
cally! known for any state@3,29#, except for the Bethe loga-
rithm which has been numerically evaluated for many states,
including the ones we consider here@5,6,41,42#. As indicated
in Eq. ~6!, the limit of the remainderGSE(nl j ,Za) as Za
→0 is by definitionA60(nl j ). We have estimated this limit
both visually and by fittingGSE(nl j ,Za) with various
choices of nonzero higher-order terms. A typical curve for
GSE(Za) is shown in Fig. 9. The estimates ofA60 obtained
by these proceduresconfirm the independent analytic results
of Tables I–IV to a typical accuracy of 10–20%, with a few
exceptions. Thus, for 2P levels, plottingGSE as in Fig. 9
allowed us to confirm the values ofA60(2Pj ) in Table I to a
precision of about 1%. This higher precision is obtained by
using the self-energies of 2P states obtained in Ref.@15# for
values ofZa close to zero (Z51, . . . ,5): such low-Z self-
energies are well suited to an evaluation ofA60 by the limit
~6!. Plotting GSE for D3/2 states lead toA60(nD3/2)
50.005(10) forn53, . . . ,8, inagreement with Table II. Fi-
nally, since no non-perturbative self-energy~1! is available
for 8D5/2 states, we were not able to independently obtain
A60(8D5/2) by using such values.

As a by-product of our work with graphs of
GSE(nl j ,Za), we estimate the self-energy remainder
GSE(nl j ,a) relevant to hydrogen (Z51) to be 0.030~5! for
3D5/2 and 4D5/2 states@see Eq.~5!#; this is larger than the
estimate of 0.00~1! given in Ref.@2# ~p. 468!. These two new
values change the previous estimate of the self-energy of
3D5/2 and 4D5/2 states through Eq.~7! by a relatively large
amount, compared to the current best experimental uncer-
tainty in transition frequencies~about 1 Hz @1#!. Thus, a
variation of 0.03 inGSE(3D5/2,a) in Eq. ~5! corresponds to
a variation of about 50 Hz in the self-energy correction~1! of
the 3D5/2 level in hydrogen. The same variation in
GSE(4D5/2,a) induces a variation of about 20 Hz in the
self-energy of the 4D5/2 level in hydrogen; on the other hand,
this change is small compared to the uncertainty of the rel-
evant measurements considered in Ref.@2#.

As a third and last check, we used the numerical, exact
values ofF in order to study the following difference be-
tween remaindersGSE @see Eqs.~5! and ~7!#:

D fsGSE~nl,Za!5GSE~nll 11/2,Za!2GSE~nll 21/2,Za!,
~44!

where, by definition ofA60 ~6!,

lim
Za→0

D fsGSE~nl,Za!5A60~nll 11/2!2A60~nll 21/2! ~45!

5D fsA60~nl !, ~46!

which denotes a quantity associated to the fine structure. The
numerical evaluation of this limit is interesting: for the states
of Tables I–IV, the numerical results forF yield values of
D fsA60(nl) which are more accurate than our numerical es-
timates of the two individual termsA60(nll 11/2) and
A60(nll 21/2). Our analytic values forD fsA60 in Eq. ~46! were
checked by plotting

FIG. 8. These two figures represent, respectively, the same
quantities as those found in Fig. 7, but for the 5G7/2 level instead of
the 2P1/2 level. The fact that the curve in~b! contains negative
values ofI @see Eq.~43!# indicates that the three-order approxima-
tion ~42! to the self-energy~7! is better than the two-order approxi-
mation ~41!, at least over the range of nuclear charge numbersZ
5252110. The three-order approximation~42! uses the value of
A60(5G7/2) reported in Table IV.

FIG. 9. Plot ~solid line! of numerical values of the remainder
GSE(4D5/2,Za) of the self-energy~5!; the dashed line indicates the
value of A60(4D5/2).0.0314 reported in this paper~see Table II!.
By definition, the coefficientA60 can be obtained as the limit~6! of
GSE asZa→0. This plot shows that the value ofA60 extracted from
numerical self-energies is consistent with the value obtained by the
calculations presented in this paper. We made identical observations
for all the states of Tables I–IV.
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K~Z!5
D fsGSE~nl,Za!

D fsA60~nl !
21, ~47!

where D fsGSE(nl,Za) was calculated from thenumerical
values ofF @see Eq.~7! and the coefficients reproduced in
Sec. II#, and where the value ofD fsA60(nl) in Eq. ~46! was
deduced from theanalytic results of Tables I–IV. If the nu-
merical and analytic estimates ofD fsA60(nl) do agree, the
function ~47! would go to zero asZ→0. This is indeed con-
sistent with what we observed; Fig. 10 provides an example
of this behavior. Weconfirm the values ofD fsA60(nl) in Eq.
~46! which can be immediately deduced from Tables I–IV.
The analytic results forD fsA60(nl) are thus found to be con-
sistent with the numerical data forD fsGSE; the level of con-
firmation is 5–10%@relative to D fsA60(nl)] for P and D
states~1% for the 2P states, and 8D states not included, for
the reason mentioned above!, 3% for F states, and 1% forG
states.

This represents animprovementover the accuracy of
A60(nl j ) obtained by the previous check. This improvement
comes evidently from the fact that the relative deviation of
D fsGSE in Eq. ~44! from D fsA60 in Eq. ~46! is small over the
whole range 0,Z<110, compared to the relative deviation

GSE~nl j ,Za!

A60~nl j !
21 ~48!

of GSE @see Eq.~5!# from A60(nl j ) in Eq. ~6!, with j 5 l
11/2 or j 5 l 21/2. As a consequence, the uncertainty in the
numerical evaluation of the limit of Eq.~47! as Z→0 is
relatively small. Figure 10 shows an example of the small-
ness of the contributions toD fsGSE which go beyondD fsA60.
Moreover, we have observed that the higher the angular mo-
mentuml, the smaller the values of the deviation~47!, hence
the stronger confirmation of our values ofD fsA60(nl) for
high orbital angular momenta.

VIII. SUMMARY OF RESULTS

This paper contains results that are relevant to the self-
energy of a non-S electron bound to a point nucleus of

charge numberZ. We provided estimates and values~see also
Ref. @9#! for the first two nonanalytically known contribu-
tions to the self-energy expansion~5!, namely the Bethe
logarithm lnk0(nl) and the so-calledA60(nl j ) coefficient,
which can be viewed as arelativistic Bethe logarithm. The
main numerical results are contained in Tables I–IV, in Eq.
~35!, and Table VIII, in Eq.~36!, and in Eq.~37!. We have
also conjectured, in Sec. VI, that the order of magnitude of
the relativistic Bethe logarithmA60(nl j ) does not depend on
the principal quantum numbern. In addition to this, we note
that the orders of magnitude ofA60(n ll 21/2) and A60„n ( l
11)l 13/2… are the same~for a given set of quantum numbers
n and l .1) in Tables I–IV. These results, taken together,
yield in particular the best available approximations of the
self-energy in hydrogen and light hydrogenlike ions, except
for n51 andn52 levels@12,15# ~see also Sec. VII!; such an
approximation can be obtained through Eqs.~1! and ~7!.

CalculatingA60 has been a challenge since the seminal
work of Bethe@4# on the dominant self-energy coefficients of
Sstates@see Eqs.~7! and~1!#. Details of the method we used
were described in Secs. III and IV. As discussed in Sec. VII,
including the coefficientsA60 reported in Tables I–IV in a
~truncated! expansion of the self-energy improves its accu-
racy over a large range of nuclear charge numbersZ.

We checked our calculations ofA60 by both analytic and
numerical means. The so-callede method, which we have
employed~see Sec. III!, makes divergences appear in the
low- and high-energy contributions toA60, as the scale-
separating parametere between these two contributions goes
to zero. We have observed that, as required, these diver-
gences cancel when the two parts are added. Moreover, our
calculations correctly reproduced the known lower-order co-
efficientsA40 andA61. We have also checked our results for
A60 against numerical values of the self-energy, and were
able to confirm them by this independent method to the level
of about 15%~except forD3/2 states, as explained in Sec.
VII !.

Obtaining results forA60 required extending~analytically!
the angular algebra developed for 2P states@13# to higher
angular momenta. Techniques of numerical convergence ac-
celeration of series@7,26,28# were instrumental in evaluating
the parts ofA60 which could not be analytically calculated.
The recent analytic calculations of Ref.@27# enabled us to
obtain with a high precision the self-energy~1! of electrons
with high (j .3/2) angular momentum, for various values of
the nuclear charge numberZ; the new calculations that we
have performed required the use of massive parallel comput-
ers and thousands of hours of computing time.~These nu-
merical data, which have been used for the plots in Figs.
8–10, will be presented in detail elsewhere@59#.! In order to
perform numerical checks ofA60 we have also used the most
recent available values of the self-energy. This provided us
with independent values of theA60 coefficients, extracted
from the numerical self-energies, thus allowing us to check
the analytic results presented in Tables I–IV~see Sec. VII!.

Some cancellations occur between different contributions
to A60 ~in addition to the cancellation of thee-parameter
divergences!: for some of the atomic states investigated, the
absolute magnitude of theA60 coefficient is as small as 1023,

FIG. 10. Plot of the functionK in Eq. ~47! for the 5F7/2 and
5F5/2 states. The limit of this function asZ→0 must be zero if the
coefficientsA60 of Tables I–IV agree with exact, numerical values
of the self-energy. The curve displayed here indicates that the two
values of D fsA60(5F) in Eq. ~46! obtained independently from
Table III and from nonperturbative self-energies~1! @via Eqs.~7!,
~8!, ~11c!, ~44!, and~45!# do not differ by more than about 3%.

PERTURBATION APPROACH TO THE SELF-ENERGY OF . . . PHYSICAL REVIEW A 68, 042101 ~2003!

042101-13



whereas the largest individual contribution toA60, when fol-
lowing the classification of the corrections according to Refs.
@13,14#, is of the order of 1022 or larger for all atomic states
discussed here~see also Tables VI and VII!.

Future calculations of the Bethe logarithm lnk0(nl) and of
the relativistic Bethe logarithmA60(nl j ) could also fruitfully
be compared to the estimates given by Eqs.~35!, ~36!, and
~37!, and Table VIII. The results presented in this paper also
allow one to perform checks of future exact self-energies
obtained by numerical methods, by comparing their values to
the three-term self-energy approximation~42! provided here
for P and higher-l states. The values ofA60 in Tables I–IV
can be of interest for analyzing the Lamb shift of highly
excited~high-n and high-l ) electronic states in recent@8,16–
18# and future high-precision spectroscopy experiments. The
results of Sec. IV–VI also provide the best available self-
energy approximation for many statesnl j and nuclear charge
numbersZ ~see Sec. VII!; these approximations can, for in-
stance, be useful in evaluating the contribution of QED ef-
fects in atoms@60–63# or molecules@64#.
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APPENDIX: LOCAL FITS

This appendix describes a fitting procedure which is de-
signed to extract ‘‘local’’ numerical quantities from a set of
data points, and to allow one to assess the numerical uncer-
tainty associated to these quantities. A partial sketch of this
procedure was first introduced in Ref.@65#. Here, ‘‘local’’
refers, for instance, to the evaluation of a perturbation expan-
sion about one abscissa; the purpose of the method presented
here is to perform fits that are local to an abscissa of interest,
as opposed to finding the best global fit of some data points.
We thus used it in order to obtain asymptotic coefficients for
A60(nl j ) for P and D states in Sec. V~see Table VIII!, as
well as the asymptotic expansion of the Bethe logarithm
ln k0(nl) in Eq. ~37!—in these applications, the quantities
evaluated are local to eithern5` or l 5`. This method can,
in principle, be applied to many other problems that require
local fits.

In order to describe the local-fit procedure, we take the
evaluation of the limit

lim
l→`

l 3ln k0~ n̄l ! ~A1!

as an example—here we haven̄5 l 11 and lnk0(nl) is the
Bethe logarithm ~9!. This limit was evaluated as
20.056 853(2)@see Fig. 2 and Eq.~37!#.

Figures 2 and 11 contain data points which are relevant to
Eq. ~A1!: we have plotted

l 3ln k0~ n̄l ! ~A2!

as a function ofl 21 ~with values of the Bethe logarithm
found in Ref.@6#!. The limit ~A1! can visually be estimated
from the data points in Fig. 2 to be20.057(1).

In order to improve over the estimate20.057(1) for Eq.
~A1!, we fit ~exactly! each pair of two consecutive points
~A2! in Fig. 2 with a line, as depicted in Fig. 11. Each of the
fitting lines in Fig. 11 gives an estimate of limit~A1! by
extrapolation tol 2150 ~intersection of the line with the
l 2150 axis!. Figure 12 contains each of these estimates, as a
function of the average abscissa of the two points that were

FIG. 11. This figure shows the lines going through a few pairs
of successive data points given by~A2!—see also Fig. 2. Each of
these lines is a local approximation to the curve underlying the data
points. Each line yields an estimate of limit~A1! of the data points
as l 21→0 ~this estimate is at the intersection of the line with the
l 2150 axis!. Figure 12 graphically displays these estimates.

FIG. 12. This figure shows the estimates of limit~A1! obtained
through the two-point fits of Fig. 11. From this graph, we estimate
limit ~A1! to be20.0568(1), which is more precise than, and con-
sistent with the value20.057(1) obtained from the original data in
Figs. 2 and 11. The limit estimates are plotted along the vertical
direction, while the abscissa associated to an estimate is the average
abscissa of the two data points of Fig. 11 which were used in pro-
ducing it.
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used in obtaining it. Because the curve in Fig. 12 is relatively
flatter than the curve in Fig. 11, we can estimate limit~A1!
with an improved uncertainty; thus, we deduce from Fig. 12
the value20.0568(1) for limit ~A1! that we are studying,
which is consistent with the previous estimate20.057(1).

This better estimate20.0568(1) of limit~A1! can be fur-
ther improved by continuing to increase the numberp of data
points ~A2! included in local fits of the data. Thus, for an
increasing numberp of data points, we fitted~exactly! each
set ofp successive points~A2! in Fig. 11 with a polynomial
of degree p21 ~linear combination of the functions 1,
l 21, . . . ,l 2(p21)) and represented the value of the polyno-
mial extrapolated tol 2150 as a function of the average
abscissa of thep points. Figure 13 depicts this process. The
plotted values are estimates of limit~A1! obtained with
higher and higher-order~local! fits of the data points given
by ~A2!. In Fig. 13, the abscissa of each estimate is the
average of the abscissasl 21 of the fitted data points given by
~A2!. We observed that the curves so obtained becomeexpo-
nentially flat, in the sense that their relative amplitudes be-
come exponentially smaller and smaller—until the uncertain-
ties of individual estimates become important, as described
below. This fact, which is illustrated in Fig. 13, allowed us to
obtain more and more accurate estimates of limit~A1!.

The most accurate value that we obtained for limit~A1!
through the local-fit procedure described here is
20.056 853(2)@see Eq.~37!#, as is illustrated in Fig. 14.
This limit was obtained by fitting each sequence ofp56
data points with a fifth-degree polynomial. Fits of the data
points~A2! with larger numbers of data points display more
irregular estimate curves; this can, for instance, be seen by
comparing Fig. 14 with Fig. 15.

As we have seen above, the uncertainty in the fitted value
can be evaluated by visually extrapolating the fitting curves
~i.e., curves such as those of Figs. 12–15!. Another uncer-
tainty must in general be taken into account in order to ob-
tain a reliable estimate for the fitted quantity: the uncertainty
in the data points. All the curves presented in this appendix
do contain error bars that reflect the uncertainties in the es-
timates of Eq.~A1!, which come from the uncertainties in
the data points given by~A2!. We evaluated the uncertainty

associated to each fit ofp data points given by~A2! by cal-
culating three fits: a fit with the middle values of the ordi-
nates, a fit with the higher values, and a fit with the lower
values; the three estimates of the fitted quantity~A1! ob-
tained through this procedure define an estimate with an er-
ror bar ~see, e.g., Fig. 15!. Other ways of estimating the
uncertainty in the fit result can be used; a good choice of
uncertainty evaluation yields successive estimates of the fit-
ted quantity which are compatible with a smooth curve of
estimates~see, e.g., Fig. 15!.

One of the advantages of the local-fit method presented in
this appendix is that data points that are located far from the
abscissa of interest (l 2150, here! can fruitfully be used in
evaluating the fitted quantity@limit ~A1!, in our example#.
Thus, as Fig. 15 illustrates, data points given by~A2! with
‘‘large’’ abscissas can yield more precise estimates of limit
~A1! than data points with small abscissas. This behavior is
particularly useful when data points in the region of interest
have relatively large uncertainties.

The procedure detailed in this appendix also allows one to
study the quality of lists of numerical results that should lie
on a smooth curve, but whose consistency is not obvious
through a simple inspection or plot of the values. In fact,

FIG. 13. From the lower to the higher curve: estimates of limit
~A1! obtained through fits of the data points given by~A2! with
polynomials of degree 1~see also Fig. 12!, 3, and 5~see also Fig.
14!. Fitting the data in Fig. 11 with 1–6 points yielded mutually
coherent estimates of limit~A1! with an exponentially decreasing
error.

FIG. 14. This figure shows estimates of limit~A1! obtained by
fitting the data in Fig. 11 with fifth-degree polynomials~in l 21).
The high relative stability of the estimates asl 21→0 allowed us to
give the precise value20.056 853(2) in Eq.~37! for limit ~A1!.

FIG. 15. This figure displays estimates of limit~A1! obtained by
fitting the data in Fig. 11 with a eigth-degree polynomials~in l 21).
It should be compared to Fig. 14, which gives a more accurate
estimate of limit~A1! by fitting sequences of only six data points.
The accuracy of the local fits performed here first increases with the
order of the local approximations to the data points given by~A2!
~see Fig. 13! and then eventually decreases~compare this plot to
Fig. 14!.
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curves such as those found in Figs. 12–15 can be very sen-
sitive to small errors in a list of numerical values. We have
not noticed such errors in theA60 values of Tables I and II
while evaluating the asymptotic coefficients reported in
Table VIII; this provided an additional check of the values
reported in these tables~see also Sec. VII!.

The local-fit method described here is not restricted to the
asymptotic study of the Bethe logarithm that we have used as
an example. In general, it can yield precise estimates of
quantities that are local to a set of data point@such as limit
~A1!#, including, for instance, perturbation coefficients of
nonanalytic expansions@e.g., Eq.~5!#.
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