200 research outputs found

    An integrated genetic-demographic model to unravel the origin of genetic structure in European eel (<i>Anguilla anguilla</i> L.)

    Get PDF
    The evolutionary enlightened management of species with complex life cycles often requires the development of mathematical models integrating demographic and genetic data. The genetic structure of the endangered European eel (Anguilla anguilla L.) has been thoroughly analyzed in several studies in the past years. However, the interpretation of the key demographic and biologic processes that determine the observed spatio-temporal genetic structure has been very challenging owing to the complex life cycle of this catadromous species. Here, we present the first integrated demographic-genetic model applied to the European eel that explicitly accounts for different levels of larval and adult mixing during oceanic migrations and allows us to explore alternative hypotheses on genetic differentiation. Our analyses show that (i) very low levels of mixing occurring during larval dispersal or adult migration are sufficient to erase entirely any genetic differences among sub-populations; (ii) small-scale temporal differentiation in recruitment can arise if the spawning stock is subdivided in distinct reproductive groups; and (iii) the geographic differentiation component might be overestimated if a limited number of temporal recruits are analyzed. Our study can inspire the scientific debate on the interpretation of genetic structure in other species characterized by complex life cycle and long-range migrations

    Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change

    Get PDF
    In low-lying coastal areas, the co-occurrence of high sea level and precipitation resulting in large runoff may cause compound flooding (CF). When the two hazards interact, the resulting impact can be worse than when they occur individually. Both storm surges and heavy precipitation, as well as their interplay, are likely to change in response to global warming. Despite the CF relevance, a comprehensive hazard assessment beyond individual locations is missing, and no studies have examined CF in the future. Analyzing co-occurring high sea level and heavy precipitation in Europe, we show that the Mediterranean coasts are experiencing the highest CF probability in the present. However, future climate projections show emerging high CF probability along parts of the northern European coast. In several European regions, CF should be considered as a potential hazard aggravating the risk caused by mean sea level rise in the future

    A pilot-plant for the selective recovery of magnesium and calcium from waste brines

    Get PDF
    The problem of brines disposal has raised great interest towards new strategies for their valorisation through the recovery of minerals or energy. As an example, the spent brine from ion exchange resins regeneration is often discharged into rivers or lakes, thus impacting on the process sustainability. However, such brines can be effectively reconcentrated, after removal of bivalent cations, and reused for the resins regeneration. This work focuses on developing and testing a pilot plant for selective recovery of magnesium and calcium from spent brines exploiting a novel proprietary crystallization unit. This is part of a larger treatment chain for the complete regeneration of the brine, developed within the EU-funded ZERO BRINE project. The pilot crystallizer was tested with the retentate of the nanofiltration unit processing the spent brine from the industrial water production plant of Evides Industriewater B.V. (Rotterdam, The Netherlands). Magnesium and calcium hydroxide were selectively precipitated by adding alkaline solution in two consecutive steps and controlling reaction pH. Performance was assessed in terms of recovery efficiency and purity of produced crystals, observing in most investigated cases a recovery of about 100% and 97% and a purity above 90% and 96%, for magnesium and calcium hydroxide, respectively

    Fishery-Induced Selection for Slow Somatic Growth in European Eel

    Get PDF
    Both theoretical and experimental studies have shown that fishing mortality can induce adaptive responses in body growth rates of fishes in the opposite direction of natural selection. We compared body growth rates in European eel (Anguilla anguilla) from three Mediterranean stocks subject to different fishing pressure. Results are consistent with the hypotheses that i) fast-growing individuals are more likely to survive until sexual maturity than slow-growing ones under natural conditions (no fishing) and ii) fishing can select for slow-growing individuals by removing fast-growing ones. Although the possibility of human-induced evolution seems remote for a panmictic species like such as the European eel, further research is desirable to assess the implications of the intensive exploitation on this critically endangered fish

    Network structure indexes to forecast epidemic spreading in real-world complex networks

    Get PDF
    Complex networks are the preferential framework to model spreading dynamics in several real-world complex systems. Complex networks can describe the contacts between infectious individuals, responsible for disease spreading in real-world systems. Understanding how the network structure affects an epidemic outbreak is therefore of great importance to evaluate the vulnerability of a network and optimize disease control. Here we argue that the best network structure indexes (NSIs) to predict the disease spreading extent in real-world networks are based on the notion of network node distance rather than on network connectivity as commonly believed. We numerically simulated, via a type-SIR model, epidemic outbreaks spreading on 50 real-world networks. We then tested which NSIs, among 40, could a priori better predict the disease fate. We found that the “average normalized node closeness” and the “average node distance” are the best predictors of the initial spreading pace, whereas indexes of “topological complexity” of the network, are the best predictors of both the value of the epidemic peak and the final extent of the spreading. Furthermore, most of the commonly used NSIs are not reliable predictors of the disease spreading extent in real-world networks

    Considering weights in real social networks: A review

    Get PDF
    Network science offers powerful tools to model complex social systems. Most social network science research focuses on topological networks by simply considering the binary state of the links, i.e., their presence or absence. Nonetheless, complex social systems present heterogeneity in link interactions (link weight), and accounting for this heterogeneity, it is mandatory to design reliable social network models. Here, we revisit the topic of weighted social networks (WSNs). By summarizing the main notions, findings, and applications in the field of WSNs, we outline how WSN methodology may improve the modeling of several real problems in social sciences. We are convinced that WSNs may furnish ideas and insights to open interesting lines of new research in the social sciences

    Guidance, Navigation, and Control Performance for the GOES-R Spacecraft

    Get PDF
    The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the first of the next generation geostationary weather satellites, scheduled for delivery in late 2015 and launch in early 2016. Relative to the current generation of GOES satellites, GOES-R represents a dramatic increase in Earth and solar weather observation capabilities, with 4 times the resolution, 5 times the observation rate, and 3 times the number of spectral bands for Earth observations. GOES-R will also provide unprecedented availability, with less than 120 minutes per year of lost observation time. The Guidance Navigation & Control (GN&C) design requirements to achieve these expanded capabilities are extremely demanding. This paper first presents the pointing control, pointing stability, attitude knowledge, and orbit knowledge requirements necessary to realize the ambitious Image Navigation and Registration (INR) objectives of GOES-R. Because the GOES-R suite of instruments is sensitive to disturbances over a broad spectral range, a high fidelity simulation of the vehicle has been created with modal content over 500 Hz to assess the pointing stability requirements. Simulation results are presented showing acceleration, shock response spectrum (SRS), and line of sight responses for various disturbances from 0 Hz to 512 Hz. These disturbances include gimbal motion, reaction wheel disturbances, thruster firings for station keeping and momentum management, and internal instrument disturbances. Simulation results demonstrate excellent performance relative to the pointing and pointing stability requirements, with line of sight jitter of the isolated instrument platform of approximately 1 micro-rad. Low frequency motion of the isolated instrument platform is internally compensated within the primary instrument. Attitude knowledge and rate are provided directly to the instrument with an accuracy defined by the Integrated Rate Error (IRE) requirements. The allowable IRE ranges from 1 to 18.5 micro-rad, depending upon the time window of interest. The final piece of the INR performance is orbit knowledge. Extremely accurate orbital position is achieved by GPS navigation at Geosynchronous Earth Orbit (GEO). Performance results are shown demonstrating compliance with the 50 to 75 m orbit position accuracy requirements of GOES-R, including during station-keeping and momentum management maneuvers. As shown in this paper, the GN&C performance for the GOES-R series of spacecraft supports the challenging mission objectives of the next generation GEO Earth-observation satellites

    Trace elements and isotopes analyses on historical samples of white sharks from the Mediterranean Sea

    Get PDF
    The white shark Carcharodon carcharias has been present in the Mediterranean Sea since 3.2 million years ago. Nevertheless, the current population shows a low genetic variability suggesting an endangered small population, on which there is scarce information regarding ecotoxicology or trophic ecology. Given that white shark's sightings are rare in the Mediterranean and the possibility of obtaining samples is highly limited, the aim of this research was to provide general information regarding the concentration of trace elements and stable isotopes (delta N-15 and delta C-13). Laboratory analyses were performed on 18 and 12 subsamples from two different white sharks' vertebrae obtained from two adult specimens caught in 1987, in Favignana Island, Italy. Perforations were made along the vertebrae to describe both trace elements and stable isotopes at different life stages. A total of 38 trace elements were analysed, in which the highest concentrations were found in Fe, Sr, U, Pb, and Zn. The fluctuations of these elements during the ontogeny of both individuals could have been related to changes in diet and environment, although the specific origin remains unknown. Regarding stable isotopes, the vertebrae from the male showed an isotopic range from 9.6 parts per thousand to 10.8 parts per thousand (delta N-15) and from -16.5 parts per thousand to -13.0 parts per thousand (delta C-13) with a mean +/- SD value of 10.3 +/- 0.4 parts per thousand for delta N-15 and -14.6 +/- 1.3 parts per thousand for delta C-13; whereas the female vertebrae had an isotopic range from 9.8 parts per thousand to 11.1 parts per thousand (delta N-15) and from -16.9 parts per thousand to -15.0 parts per thousand (delta C-13), with a mean +/- SD value of 10.8 +/- 0.6 parts per thousand for delta N-15 and -15.8 +/- 0.8 parts per thousand for delta C-13. There were no significant delta N-15 differences (U = 6, p = 0.07346) between the two individuals. However, there were just significant differences in delta C-13 (t = -1.8, p = 0.049256), which could suggest sexual segregation in terms of habitat use and feeding habits
    corecore