77 research outputs found

    Progress Towards Modeling the Ablation Response of NuSil-Coated PICA

    Get PDF
    The Mars Science Laboratory (MSL) Entry, Descent and Landing Instrumentation (MEDLI) collected in-flight data largely used by the ablation community to verify and validate physics-based models for the response of the Phenolic Impregnated Carbon Ablator (PICA) material [1-4]. MEDLI data were recently used to guide the development of NASAs high-fidelity material response models for PICA, implemented in the Porous material Analysis Toolbox based on OpenFOAM (PATO) software [5-6]. A follow-up instrumentation suite, MEDLI2, is planned for the upcoming Mars 2020 mission [7] after the large scientific impact of MEDLI. Recent analyses performed as part of MEDLI2 development draw the attention to significant effects of a protective coating to the aerothermal response of PICA. NuSil, a silicone-based overcoat sprayed onto the MSL heatshield as contamination control, is currently neglected in PICA ablation models. To mitigate the spread of phenolic dust from PICA, NuSil was applied to the entire MSL heatshield, including the MEDLI plugs. NuSil is a space grade designation of the siloxane copolymer, primarily used to protect against atomic oxygen erosion in the Low Earth Orbit environment. Ground testing of PICA-NuSil (PICA-N) models all exhibited surface temperature jumps of the order of 200 K due to oxide scale formation and subsequent NuSil burn-off. It is therefore critical to include a model for the aerothermal response of the coating in ongoing code development and validation efforts

    Progress Towards Modeling the Mars Science Laboratory PICA-NuSil Heatshield

    Get PDF
    The data collected by the Mars Science Laboratory (MSL) Entry, Descent and Landing Instrumentation, MEDLI, have become an established reference to assess the performance of engineering models of the Phenolic Impregnated Carbon Ablator (PICA) and to validate hypersonic computational fluid dynamics (CFD) tools for entry systems. MEDLI measurements are also extensively used as validation reference for current developments of high-fidelity material response models for PICA. So large has been the scientific output and impact of MEDLI that a follow-up instrumentation suite MEDLI2 is underway for the upcoming Mars 2020 mission.A feature neglected thus far in the modeling of the MSL heatshield, is the presence of a silicone-based room temperature vulcanizing coating designated NuSil CV-1144-0. NuSil was used to coat the entire MSL heatshield, including the MEDLI plugs, to mitigate the spread of phenolic dust from PICA, and limit contamination during clean room operations. NuSil CV-1144-0 is a space grade siloxane copolymer, designed as an oxygen protection barrier for extreme low temperature environment.Assessments conducted during MSL development demonstrated that the presence of NuSil had no adverse effect on the performance of PICA. However, evidence from ground testing of PICA-NuSil (PICA-N) models in the HyMETS arc-jet test facility suggests that the silicone changes the high temperature response of PICA. It is therefore critical to assess the importance of modeling the coating in ongoing code validation efforts

    1,8-Cineole Inhibits Both Proliferation and Elongation of BY-2 Cultured Tobacco Cells

    Get PDF
    Volatile monoterpenes such as 1,8-cineole inhibit the growth of Brassica campestris seedlings in a dose-dependent manner, and the growth-inhibitory effects are more severe for roots than hypocotyls. The preferential inhibition of root growth may be explained if the compounds inhibit cell proliferation more severely than cell elongation because root growth requires both elongation and proliferation of the constituent cells, whereas hypocotyl growth depends exclusively on elongation of existing cells. In order to examine this possibility, BY-2 suspension-cultured tobacco (Nicotiana tabacum) cells were treated with 1,8-cineole, and the inhibitory effects on cell proliferation and on cell elongation were assessed quantitatively. Treatment with 1,8-cineole lowered both the mitotic index and elongation of the cells in a dose-dependent manner, and the half-maximal inhibitory concentration (IC50) for cell elongation was lower than that for cell proliferation. Moreover, 1,8-cineole also inhibited starch synthesis, with IC50 lower than that for cell proliferation. Thus, the inhibitory effects of 1,8-cineole were not specific to cell proliferation; rather, 1,8-cineole seemed inhibitory to a variety of physiological activities when it was in direct contact with target cells. Based on these results, possible mechanisms for the mode of action of 1,8-cineole and for its preferential inhibition on root growth are discussed

    Induced epidermal permeability modulates resistance and susceptibility of wheat seedlings to herbivory by Hessian fly larvae

    Get PDF
    Salivary secretions of neonate Hessian fly larvae initiate a two-way exchange of molecules with their wheat host. Changes in properties of the leaf surface allow larval effectors to enter the plant where they trigger plant processes leading to resistance and delivery of defence molecules, or susceptibility and delivery of nutrients. To increase understanding of the host plant's response, the timing and characteristics of the induced epidermal permeability were investigated. Resistant plant permeability was transient and limited in area, persisting just long enough to deliver defence molecules before gene expression and permeability reverted to pre-infestation levels. The abundance of transcripts for GDSL-motif lipase/hydrolase, thought to contribute to cuticle reorganization and increased permeability, followed the same temporal profile as permeability in resistant plants. In contrast, susceptible plants continued to increase in permeability over time until the entire crown of the plant became a nutrient sink. Permeability increased with higher infestation levels in susceptible but not in resistant plants. The ramifications of induced plant permeability on Hessian fly populations are discussed

    Atomic scale strain relaxation in axial semiconductor III-V nanowire heterostructures

    Get PDF
    Combination of mismatched materials in semiconductor nanowire heterostructures offers a freedom of bandstructure engineering that is impossible in standard planar epitaxy. Nevertheless, the presence of strain and structural defects directly control the optoelectronic properties of these nanomaterials. Understanding with atomic accuracy how mismatched heterostructures release or accommodate strain, therefore, is highly desirable. By using atomic resolution high angle annular dark field scanning transmission electron microscopy combined with geometrical phase analyses and computer simulations, we are able to establish the relaxation mechanisms (including both elastic and plastic deformations) to release the mismatch strain in axial nanowire heterostructures. Formation of misfit dislocations, diffusion of atomic species, polarity transfer, and induced structural transformations are studied with atomic resolution at the intermediate ternary interfaces. Two nanowire heterostructure systems with promising applications (InAs/InSb and GaAs/GaSb) have been selected as key examples

    Dissection of the Complex Phenotype in Cuticular Mutants of Arabidopsis Reveals a Role of SERRATE as a Mediator

    Get PDF
    Mutations in LACERATA (LCR), FIDDLEHEAD (FDH), and BODYGUARD (BDG) cause a complex developmental syndrome that is consistent with an important role for these Arabidopsis genes in cuticle biogenesis. The genesis of their pleiotropic phenotypes is, however, poorly understood. We provide evidence that neither distorted depositions of cutin, nor deficiencies in the chemical composition of cuticular lipids, account for these features, instead suggesting that the mutants alleviate the functional disorder of the cuticle by reinforcing their defenses. To better understand how plants adapt to these mutations, we performed a genome-wide gene expression analysis. We found that apparent compensatory transcriptional responses in these mutants involve the induction of wax, cutin, cell wall, and defense genes. To gain greater insight into the mechanism by which cuticular mutations trigger this response in the plants, we performed an overlap meta-analysis, which is termed MASTA (MicroArray overlap Search Tool and Analysis), of differentially expressed genes. This suggested that different cell integrity pathways are recruited in cesA cellulose synthase and cuticular mutants. Using MASTA for an in silico suppressor/enhancer screen, we identified SERRATE (SE), which encodes a protein of RNA–processing multi-protein complexes, as a likely enhancer. In confirmation of this notion, the se lcr and se bdg double mutants eradicate severe leaf deformations as well as the organ fusions that are typical of lcr and bdg and other cuticular mutants. Also, lcr does not confer resistance to Botrytis cinerea in a se mutant background. We propose that there is a role for SERRATE-mediated RNA signaling in the cuticle integrity pathway

    A Permeable Cuticle Is Associated with the Release of Reactive Oxygen Species and Induction of Innate Immunity

    Get PDF
    Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS), including H2O2 and O2−, are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F and can be prevented by diphenylene iodonium (DPI) or catalase. H2O2 was shown to protect plants upon exogenous application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry conditions, an effect that was found to depend on abscisic acid (ABA). Accordingly, ABA biosynthesis mutants (aba2 and aba3) were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls, demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive properties of the cuticle are linked with the induction ROS and attending innate defenses
    corecore