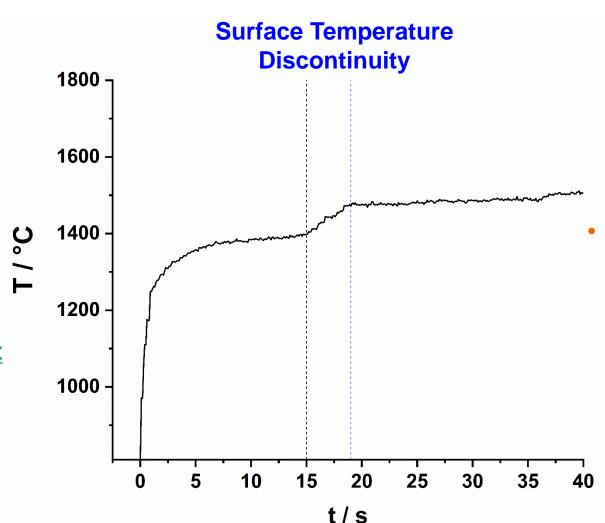


Progress Towards Modeling The Mars Science Laboratory PICA-NuSil Heatshield


Brody K. Bessire | IPPW PICA-NuSil | 07.12.19

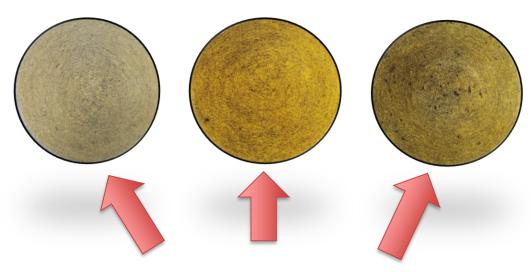
PICA-N Response Model Development / The Problem

 Surface temperature discontinuity during ARC Jet testing as measured by pyrometer.

State of the art
material response
models do not account
for the observed
surface temperature
discontinuity.

Surface Coating Applied

MEDLI Integrated
Sensor Plug (MISP)
Qualification During

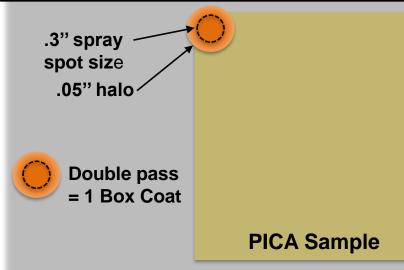

Arc-Jet Test Campaign.

NuSil Coating Process Development

Application of NuSil to PICA Mini-Sprite

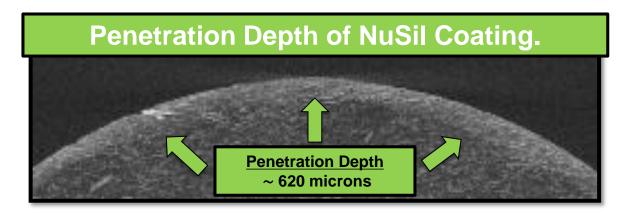
Virgin PICA 3 Box Coats 8 Box Coats

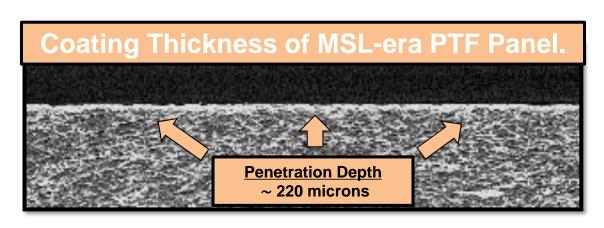
Mini-Sprite O.D. ~ 1.83"


Reported NuSil coating on Lockheed
Martin coated 3" x 3" coupons: < 3
Box Coats

NuSil diluted with VM&P Naphtha until a viscosity of 18 seconds is achieved as measured with a #2 Zahn cup.

General Application Process



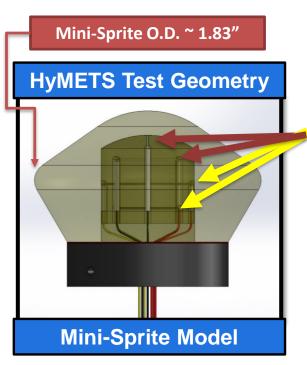


IPPW 2019

NuSil Coating Thickness

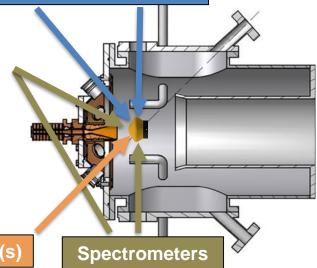
- Mini-Sprite models coated applied at AMES.
- 3 box coats.
- Penetration depth ~ 620 microns.
- Nonhomogeneous in-depth distribution of coating.

Mini-Sprite O.D. ~ 1.83 in.


- Panel coated by LMA.
- Number of box coats unknown.
- Penetration depth ~ 220 microns.
- Nonhomogeneous in-depth distribution of coating.

Panel Section = 1.00 in^2

HyMETS PICA-N Mini-Sprite Campaign

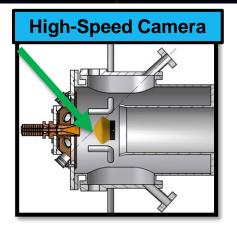

HyMETS Test Campaign March 2019.

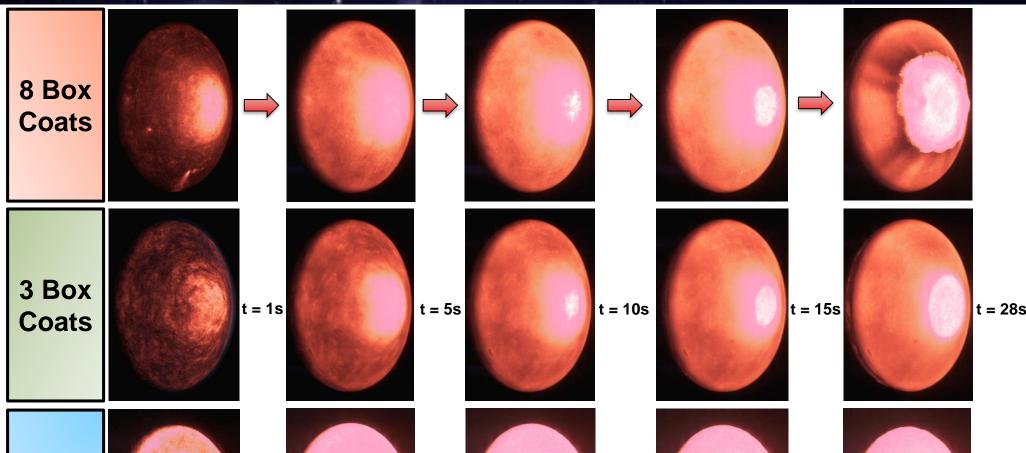
Mini-Sprite architecture chosen to study viscous flow in shear environment.

- PICA and FiberForm models (22 Models in Total) with various numbers of box coats (e.g., 0, 3, 8).
- Data collected in 3 atmospheric environments (e.g. Air, N₂, CO₂).
- Each model instrumented with thermocouples to measure in-depth temperature and a pyrometer to measure surface temperature.
- Two R-type thermocouples and two K-type thermocouples spaced ~ 5mm apart.
- Suite of spectrometers used to analyze species in the post-shock region.

High Speed Cameras

PICA-N HyMETS Test Conditions

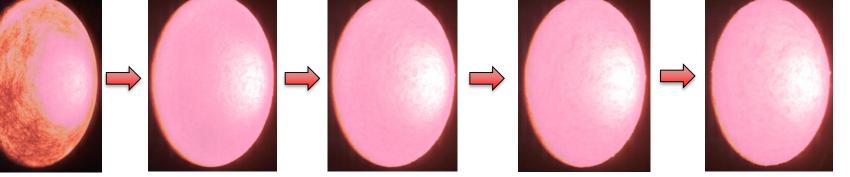

Material	Model Number	Simulated Atmosphere	Heat Flux (W/cm²)	Stagnation Pressure (kPa)	Duration (s)
PICA-N	1	Earth	140	5.6	28
PICA-N	2	Earth	140	5.6	30
PICA-N	3	Earth	140	5.6	30
PICA-N	4	Earth	60	4.1	67
PICA-N	5	Earth	224	6.6	29
PICA-N	6	N_2	131	5.3	29
PICA-N	7	Mars	127	5.2	33
PICA-N	8	Earth	60	3.9	30
PICA	9	Earth	140	5.6	30
PICA	10	N_2	130	5.3	30
PICA	11	Earth	223	6.6	21
PICA	12	Mars	126	5.3	31


FiberForm-N HyMETS Test Conditions

Material	Model Number	Simulated Atmosphere	Heat Flux (W/cm²)	Stagnation Pressure (kPa)	Duration (s)
FF-N	1	Earth	128	5.3	11
FF-N	2	Earth	141	5.6	9
FF-N	3	Earth	126	5.3	6
FF-N	4	Earth	59	4.1	32
FF-N	5	N_2	132	5.3	30
FF-N	6	Mars	127	5.1	7
FF-N	7	Earth	141	5.6	30
FF	8	Earth	141	5.6	7
FF	9	N_2	134	5.3	30
FF	10	Mars	128	5.2	25

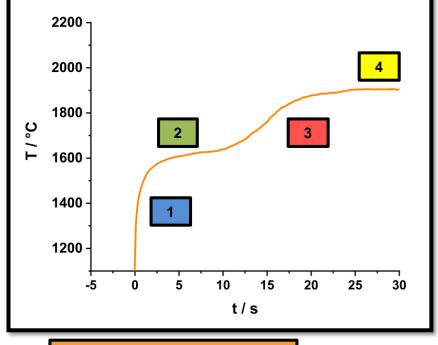
HyMETS Campaign High-Speed Video (45°)

Test Conditions


Atmosphere: Air

Heat Flux: ~ 140 W/cm²

Test Length: 30 Seconds



Development of the Model

Stage 1 – Pyrolysis of NuSil Silicone Polymer

Time = 0 - 1s Temp. = R.T. - 1500 °C

- Fast pyrolysis of silicone polymer.
- Major pyrolysis products include:

 Oxidation of thin amorphous Si_xO_yC_z layer. Stage 2 – Oxidation and In-Depth Phase Separation

Time = 1 - 10s Temp. = 1500 - 1650 °C

Persistent oxidation of Si_xO_yC_z layer to form SiO₂ layer at the surface concomitant with in-depth phase separation of Si_xO_yC_z to form SiO₂, small domains SiC, and domains of graphitic carbon.

$$Si_xO_yC_z$$
 (s) \longrightarrow SiO_2 (s) / SiC (s) / C (s)

• Formation of SiO₂ melt layer.

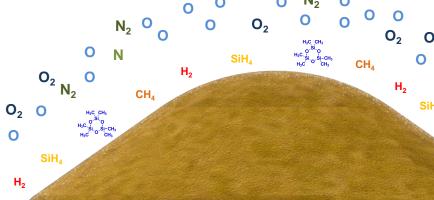
Stage 3 – Carbothermic Reduction and Differential Recession

 Thin layers of SiO₂, SiC, and carbon react to form SiO and CO (Carbothermic Reduction).

$$SiO_2(s) + SiC(s) \longrightarrow 2SiO(g) + C(s)$$

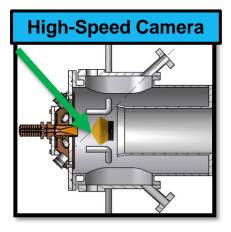
 Carbothermic reduction initiates the breakdown of a stable surface coating which exposes the underlying char layer.

 O_2 N

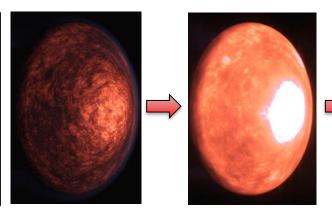

CH₄

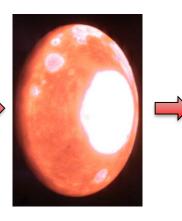
H₂

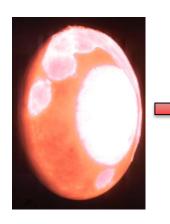
 Char layer recedes at a higher rate than the Si_xO_yC_z surface leading to differential recession.

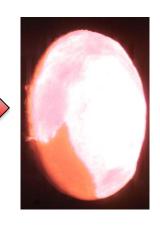

Location of Pyrometer

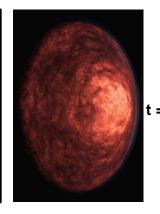
Measurement

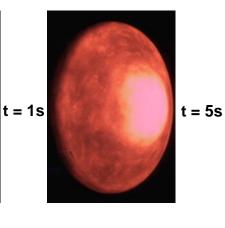


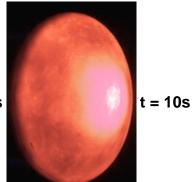

HyMETS Campaign High-Speed Video (45°)

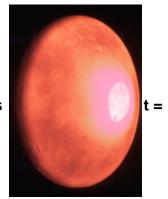


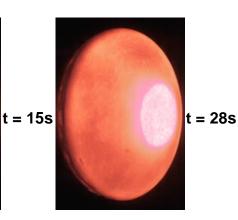


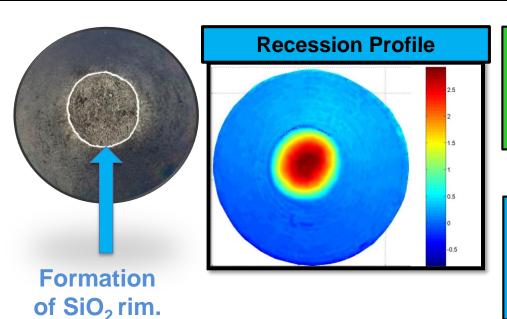

Test Conditions

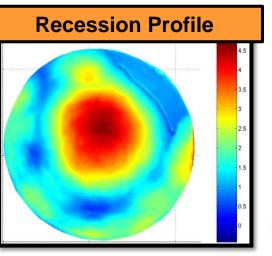

Atmosphere: Air


Heat Flux: Variable


Test Length: 30 Seconds


3 Box Coats ~ 140 W/cm²




Differential Surface Recession

Post-Test PICA With NuSil Coating

- Test articles show virtually no recession until coating begins to degrade.
- Laser scan reveals differential recession as evidenced by shallow pit (image on left).

Asymmetric recession of TPS surface.

HyMETS Test Conditions

Atmosphere: Air

Heat Flux: ~ 140 W/cm²

Test length: 30 Seconds

 Unconfined differential recession at conditions of higher heat flux (image on right).

HyMETS Test Conditions

Atmosphere: Air

Heat Flux: ~ 224 W/cm²

Test length: 29 Seconds

IPPW 2019

Stakeholders

Entry Systems Modelling Project Management (ESM)

M. Barnhardt, M. Wright, A. Brandis, M. Hughes

NASA ARC TSM / Material properties, model development, coating development

• T. Boghozian, J. Garcia, G. Gonzales, F. Milos, M. Stackpoole, M. Switzer, N. Carder, S. White, J. Monk

MEDLI2, Mars 2020 / MEDLI2 Analysis and Reconstruction

T. White, R. Beck, H. Wang

LaRC / HyMETS Testing

• S. Splinter, J. Gragg, B. Butler

NASA PMM / High-fidelity model development

• N. Mansour, J. Meurisse, J. Thornton, A. Borner, A. Fagnani, J. Ferguson, F. Semeraro

University of Illinois Urbana-Champaign and ALS / Permeability and Micro-CT Experiments

Prof. Francesco Panerai, D. Parkinson, H. Barnard

Montana State University / Oxidation Studies of NuSil and FiberForm

Prof. Timothy K. Minton, David Chen

University of Vermont / Gas-Surface Interaction Problems for Atmospheric Entry

Prof. Douglas Fletcher

SRI International / Pyrolysis Studies of PICA and NuSil

J. White

GCD FY19 Mid Year Review

End

Questions

GCD FY19 Mid Year Review