570 research outputs found
Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films
We report first-principle atomistic simulations on the effect of local strain
gradients on the nanoscale domain morphology of free-standing PbTiO
ultrathin films. First, the ferroelectric properties of free films at the
atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells),
we find flux-closure domain structures whose morphology is thickness dependent.
A critical value of 20 unit cells is observed: thinner films show structures
with 90 domain loops, whereas thicker ones develop, in addition,
180 domain walls, giving rise to structures of the Landau-Lifshitz
type. When a local and compressive strain gradient at the top surface is
imposed, the gradient is able to switch the polarization of the downward
domains, but not to the opposite ones. The evolution of the domain pattern as a
function of the strain gradient strength consequently depends on the film
thickness. Our simulations indicate that in thinner films, first the 90
domain loops migrate towards the strain-gradient region, and then the
polarization in that zone is gradually switched. In thicker films, instead, the
switching in the strain-gradient region is progressive, not involving
domain-wall motion, which is attributed to less mobile 180 domain
walls. The ferroelectric switching is understood based on the knowledge of the
local atomic properties, and the results confirm that mechanical
flexoelectricity provides a means to control the nanodomain pattern in
ferroelectric systems.Comment: 9 pages, 6 figure
Understanding the structure and reactivity of NiCu nanoparticles: An atomistic model
The structure of bimetallic NiCu nanoparticles (NP) is investigated as a function of their composition and size by means of Lattice MonteCarlo (LMC) and molecular dynamics (MD) simulations. According to our results, copper segregation takes place at any composition of the particles. We found that this feature is not size-dependent. In contrast, nickel segregation depends on the NP size. When the size increases, Ni atoms tend to remain in the vicinity of the surface and deeper. For smaller NPs, Ni atoms are located at the surface as well. Our results also showed that most of the metal atoms segregated at the surface area were found to decorate edges and/or form islands. Our findings agree qualitatively with the experimental data found in the literature. In addition, we comment on the reactivity of these nanoparticles.Fil: Quaino, Paola Monica. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada e Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Belletti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada e Ingeniería Electroquímica; ArgentinaFil: Shermukhamedov, S. A.. Kazan National Research Technological University; RusiaFil: Glukhov, D. V.. Kazan National Research Technological University; RusiaFil: Santos, Elizabeth del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Institute of Theoretical Chemistry; Alemania. Universitat Ulm; AlemaniaFil: Schmickler, Wolfgang. Universitat Ulm; Alemania. Institute of Theoretical Chemistry; AlemaniaFil: Nazmutdinov, Renat. Kazan National Research Technological University; Rusi
Janus II: a new generation application-driven computer for spin-system simulations
This paper describes the architecture, the development and the implementation
of Janus II, a new generation application-driven number cruncher optimized for
Monte Carlo simulations of spin systems (mainly spin glasses). This domain of
computational physics is a recognized grand challenge of high-performance
computing: the resources necessary to study in detail theoretical models that
can make contact with experimental data are by far beyond those available using
commodity computer systems. On the other hand, several specific features of the
associated algorithms suggest that unconventional computer architectures, which
can be implemented with available electronics technologies, may lead to order
of magnitude increases in performance, reducing to acceptable values on human
scales the time needed to carry out simulation campaigns that would take
centuries on commercially available machines. Janus II is one such machine,
recently developed and commissioned, that builds upon and improves on the
successful JANUS machine, which has been used for physics since 2008 and is
still in operation today. This paper describes in detail the motivations behind
the project, the computational requirements, the architecture and the
implementation of this new machine and compares its expected performances with
those of currently available commercial systems.Comment: 28 pages, 6 figure
Tethered Monte Carlo: computing the effective potential without critical slowing down
We present Tethered Monte Carlo, a simple, general purpose method of
computing the effective potential of the order parameter (Helmholtz free
energy). This formalism is based on a new statistical ensemble, closely related
to the micromagnetic one, but with an extended configuration space (through
Creutz-like demons). Canonical averages for arbitrary values of the external
magnetic field are computed without additional simulations. The method is put
to work in the two dimensional Ising model, where the existence of exact
results enables us to perform high precision checks. A rather peculiar feature
of our implementation, which employs a local Metropolis algorithm, is the total
absence, within errors, of critical slowing down for magnetic observables.
Indeed, high accuracy results are presented for lattices as large as L=1024.Comment: 32 pages, 8 eps figures. Corrected Eq. (36), which is wrong in the
published pape
Ianus: an Adpative FPGA Computer
Dedicated machines designed for specific computational algorithms can
outperform conventional computers by several orders of magnitude. In this note
we describe {\it Ianus}, a new generation FPGA based machine and its basic
features: hardware integration and wide reprogrammability. Our goal is to build
a machine that can fully exploit the performance potential of new generation
FPGA devices. We also plan a software platform which simplifies its
programming, in order to extend its intended range of application to a wide
class of interesting and computationally demanding problems. The decision to
develop a dedicated processor is a complex one, involving careful assessment of
its performance lead, during its expected lifetime, over traditional computers,
taking into account their performance increase, as predicted by Moore's law. We
discuss this point in detail
Simulating spin systems on IANUS, an FPGA-based computer
We describe the hardwired implementation of algorithms for Monte Carlo
simulations of a large class of spin models. We have implemented these
algorithms as VHDL codes and we have mapped them onto a dedicated processor
based on a large FPGA device. The measured performance on one such processor is
comparable to O(100) carefully programmed high-end PCs: it turns out to be even
better for some selected spin models. We describe here codes that we are
currently executing on the IANUS massively parallel FPGA-based system.Comment: 19 pages, 8 figures; submitted to Computer Physics Communication
First language attrition and syntactic subjects: a study of Greek and Italian near-native speakers of English
Thermodynamic glass transition in a spin glass without time-reversal symmetry
Spin glasses are a longstanding model for the sluggish dynamics that appears
at the glass transition. However, spin glasses differ from structural glasses
for a crucial feature: they enjoy a time reversal symmetry. This symmetry can
be broken by applying an external magnetic field, but embarrassingly little is
known about the critical behaviour of a spin glass in a field. In this context,
the space dimension is crucial. Simulations are easier to interpret in a large
number of dimensions, but one must work below the upper critical dimension
(i.e., in d<6) in order for results to have relevance for experiments. Here we
show conclusive evidence for the presence of a phase transition in a
four-dimensional spin glass in a field. Two ingredients were crucial for this
achievement: massive numerical simulations were carried out on the Janus
special-purpose computer, and a new and powerful finite-size scaling method.Comment: 10 pages, 6 figure
An in-depth view of the microscopic dynamics of Ising spin glasses at fixed temperature
Using the dedicated computer Janus, we follow the nonequilibrium dynamics of
the Ising spin glass in three dimensions for eleven orders of magnitude. The
use of integral estimators for the coherence and correlation lengths allows us
to study dynamic heterogeneities and the presence of a replicon mode and to
obtain safe bounds on the Edwards-Anderson order parameter below the critical
temperature. We obtain good agreement with experimental determinations of the
temperature-dependent decay exponents for the thermoremanent magnetization.
This magnitude is observed to scale with the much harder to measure coherence
length, a potentially useful result for experimentalists. The exponents for
energy relaxation display a linear dependence on temperature and reasonable
extrapolations to the critical point. We conclude examining the time growth of
the coherence length, with a comparison of critical and activated dynamics.Comment: 38 pages, 26 figure
Scaling and super-universality in the coarsening dynamics of the 3d random field Ising model
We study the coarsening dynamics of the three-dimensional random field Ising
model using Monte Carlo numerical simulations. We test the dynamic scaling and
super-scaling properties of global and local two-time observables. We treat in
parallel the three-dimensional Edward-Anderson spin-glass and we recall results
on Lennard-Jones mixtures and colloidal suspensions to highlight the common and
different out of equilibrium properties of these glassy systems.Comment: 18 pages, 21 figure
- …
