1,637 research outputs found
Nomenclature for renal replacement therapy and blood purification techniques in critically ill patients: practical applications
This article reports the conclusions of the second part of a consensus expert conference on the nomenclature of renal replacement therapy (RRT) techniques currently utilized to manage acute kidney injury and other organ dysfunction syndromes in critically ill patients. A multidisciplinary approach was taken to achieve harmonization of definitions, components, techniques, and operations of the extracorporeal therapies. The article describes the RRT techniques in detail with the relevant technology, procedures, and phases of treatment and key aspects of volume management/fluid balance in critically ill patients. In addition, the article describes recent developments in other extracorporeal therapies, including therapeutic plasma exchange, multiple organ support therapy, liver support, lung support, and blood purification in sepsis. This is a consensus report on nomenclature harmonization in extracorporeal blood purification therapies, such as hemofiltration, plasma exchange, multiple organ support therapies, and blood purification in sepsis
Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup
Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD
Survival following adult cardiac arrest in intensive care units: a 5-year retrospective analysis
Liver transplantation in the critically ill: a multicenter Canadian retrospective cohort study
Introduction: Critically ill cirrhosis patients awaiting liver transplantation (LT) often receive prioritization for organ allocation. Identification of patients most likely to benefit is essential. The purpose of this study was to examine whether the Sequential Organ Failure Assessment (SOFA) score can predict 90-day mortality in critically ill recipients of LT and whether it can predict receipt of LT among critically ill cirrhosis listed awaiting LT. Methods: We performed a multicenter retrospective cohort study consisting of two datasets: (a) all critically-ill cirrhosis patients requiring intensive care unit (ICU) admission before LT at five transplant centers in Canada from 2000 through 2009 (one site, 1990 through 2009), and (b) critically ill cirrhosis patients receiving LT from ICU (n = 115) and those listed but not receiving LT before death (n = 106) from two centers where complete data were available. Results: In the first dataset, 198 critically ill cirrhosis patients receiving LT (mean (SD) age 53 (10) years, 66% male, median (IQR) model for end-stage liver disease (MELD) 34 (26-39)) were included. Mean (SD) SOFA scores at ICU admission, at 48 hours, and at LT were 12.5 (4), 13.0 (5), and 14.0 (4). Survival at 90 days was 84% (n = 166). In multivariable analysis, only older age was independently associated with reduced 90-day survival (odds ratio (OR), 1.07; 95% CI, 1.01 to 1.14; P = 0.013). SOFA score did not predict 90-day mortality at any time. In the second dataset, 47.9% (n = 106) of cirrhosis patients listed for LT died in the ICU waiting for LT. In multivariable analysis, higher SOFA at 48 hours after admission was independently associated with lower probability of receiving LT (OR, 0.89; 95% CI, 0.82 to 0.97; P = 0.006). When including serum lactate and SOFA at 48 hours in the final model, elevated lactate (at 48 hours) was also significantly associated with lower likelihood of receiving LT (0.32; 0.17 to 0.61; P = 0.001). Conclusions: SOFA appears poor at predicting 90-day survival in critically ill cirrhosis patients after LT, but higher SOFA score and elevated lactate 48 hours after ICU admission are associated with a lower probability receiving LT. Older critically ill cirrhosis patients (older than 60) receiving LT have worse 90-day survival and should be considered for LT with caution
Brain state dynamics differ between eyes open and eyes closed rest
The human brain exhibits spatio-temporally complex activity even in the absence of external stimuli, cycling through recurring patterns of activity known as brain states. Thus far, brain state analysis has primarily been restricted to unimodal neuroimaging data sets, resulting in a limited definition of state and a poor understanding of the spatial and temporal relationships between states identified from different modalities. Here, we applied hidden Markov model (HMM) to concurrent electroencephalography-functional magnetic resonance imaging (EEG-fMRI) eyes open (EO) and eyes closed (EC) resting-state data, training models on the EEG and fMRI data separately, and evaluated the models' ability to distinguish dynamics between the two rest conditions. Additionally, we employed a general linear model approach to identify the BOLD correlates of the EEG-defined states to investigate whether the fMRI data could be used to improve the spatial definition of the EEG states. Finally, we performed a sliding window-based analysis on the state time courses to identify slower changes in the temporal dynamics, and then correlated these time courses across modalities. We found that both models could identify expected changes during EC rest compared to EO rest, with the fMRI model identifying changes in the activity and functional connectivity of visual and attention resting-state networks, while the EEG model correctly identified the canonical increase in alpha upon eye closure. In addition, by using the fMRI data, it was possible to infer the spatial properties of the EEG states, resulting in BOLD correlation maps resembling canonical alpha-BOLD correlations. Finally, the sliding window analysis revealed unique fractional occupancy dynamics for states from both models, with a selection of states showing strong temporal correlations across modalities. Overall, this study highlights the efficacy of using HMMs for brain state analysis, confirms that multimodal data can be used to provide more in-depth definitions of state and demonstrates that states defined across different modalities show similar temporal dynamics.</p
Fluid balance as a biomarker: impact of fluid overload on outcome in critically ill patients with acute kidney injury
Fluid therapy is fundamental to the acute resuscitation of critically ill patients. In general, however, early and appropriate goal-directed fluid therapy contributes to a degree of fluid overload in most if not all patients. Recent data imply that a threshold may exist beyond which, after acute resuscitation, additional fluid therapy may cause harm. In patients with acute kidney injury and/or oliguria, a positive fluid balance is almost universal. Few studies have examined the impact of fluid balance on clinical outcomes in critically ill adults with acute kidney injury. Payen and coworkers, in a secondary analysis of the SOAP (Sepsis Occurrence in Acutely Ill Patients) study, now present evidence that there is an independent association between mortality and positive fluid balance in a cohort of critically ill patients with acute kidney injury. In this commentary, we discuss these findings within the context of prior literature and propose that assessment of fluid balance should be considered as a potentially valuable biomarker of critical illness
Effects of modelling layers and realistic geometry in reconstruction algorithms for EIT of brain function.
Frequency Characteristics of Visually Induced Motion Sickness
This article was published in the journal, Human Factors [Sage Publications / © Human Factors and Ergonomics Society.]. The definitive version is available at: http://dx.doi.org/10.1177/0018720812469046Objective: The aim of this study was to explore
the frequency response of visually induced motion
sickness (VIMS) for oscillating linear motion in the foreand-
aft axis.
Background: Simulators, virtual environments,
and commercially available video games that create an
illusion of self-motion are often reported to induce
the symptoms seen in response to true motion. Often
this human response can be the limiting factor in the
acceptability and usability of such systems. Whereas
motion sickness in physically moving environments
is known to peak at an oscillation frequency around
0.2 Hz, it has recently been suggested that VIMS peaks
at around 0.06 Hz following the proposal that the
summed response of the visual and vestibular selfmotion
systems is maximized at this frequency. Methods: We exposed 24 participants to random
dot optical flow patterns simulating oscillating foreand-
aft motion within the frequency range of 0.025 to
1.6 Hz. Before and after each 20-min exposure, VIMS was
assessed with the Simulator Sickness Questionnaire.
Also, a standard motion sickness scale was used to rate
symptoms at 1-min intervals during each trial.
Results: VIMS peaked between 0.2 and 0.4 Hz with
a reducing effect at lower and higher frequencies.
Conclusion: The numerical prediction of the
“crossover frequency” hypothesis, and the design
guidance curve previously proposed, cannot be accepted
when the symptoms are purely visually induced.
Application: In conditions in which stationary
observers are exposed to optical flow that simulates
oscillating fore-and-aft motion, frequencies around 0.2
to 0.4 Hz should be avoided
Urine/Plasma Neutrophil Gelatinase Associated Lipocalin Ratio Is a Sensitive and Specific Marker of Subclinical Acute Kidney Injury in Mice
Background Detection of acute kidney injury (AKI) is still a challenge if conventional markers of kidney function are within reference range. We studied the sensitivity and specificity of NGAL as an AKI marker at different degrees of renal ischemia. Methods Male C57BL/6J mice were subjected to 10-, 20- or 30-min unilateral renal ischemia, to control operation or no operation, and AKI was evaluated 1 day later by histology, immunohistochemistry, BUN, creatinine, NGAL (plasma and urine) and renal NGAL mRNA expression. Results A short (10-min) ischemia did not alter BUN or kidney histology, but elevated plasma and urinary NGAL level and renal NGAL mRNA expression although to a much smaller extent than longer ischemia. Surprisingly, control operation elevated plasma NGAL and renal NGAL mRNA expression to a similar extent as 10-min ischemia. Further, the ratio of urine to plasma NGAL was the best parameter to differentiate a 10-min ischemic injury from control operation, while it was similar in the non and control-operated groups. Conclusions These results suggest that urinary NGAL excretion and especially ratio of urine to plasma NGAL are sensitive and specific markers of subclinical acute kidney injury in mice
- …
