474 research outputs found
Multi-level optical signal generation using a segmented-electrode InP IQ-MZM with integrated CMOS binary drivers
We present a segmented-electrode InP IQ-MZM, capable of multi-level optical signal generation (5-bit per I/Q arm) by employing direct digital drive from integrated, low-power (1W) CMOS binary drivers. Programmable, multi-level operation is demonstrated experimentally on one MZM of the device
Figure 1: Experimental setup 40 Gb/s NRZ Wavelength Conversion with Enhanced 2R Regeneration Characteristics using a Differentially-biased SOA-MZI switch
Abstract We present error-free 40 Gb/s NRZ signal wavelength conversion with a differential biasing scheme in a SOA -Mach Zehnder Interferometer. Experimental performance analysis shows 1.7 dB negative power penalty and enhanced 2R regenerative characteristics
GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function : a report from the COGENT consortium
CORRIGENDUM Molecular Psychiatry (2017) 22, 1651–1652 http://www.nature.com/articles/mp2017197.pdfThe complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (similar to 8M single-nucleotide polymorphisms (SNP) with minor allele frequency >= 1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT). In addition, we utilized individual SNP lookups and polygenic score analyses to identify genetic overlap with other relevant neurobehavioral phenotypes. Our primary GWAS meta-analysis identified two novel SNP loci (top SNPs: rs76114856 in the CENPO gene on chromosome 2 and rs6669072 near LOC105378853 on chromosome 1) associated with cognitive performance at the genome-wide significance level (PPeer reviewe
An SOA-MZI NRZ Wavelength Conversion Scheme With Enhanced 2R Regeneration Characteristics
Stress-Dependent Association Between Polygenic Risk for Schizophrenia and Schizotypal Traits in Young Army Recruits
Soliton switching using cascaded nonlinear-optical loop mirrors
We demonstrate multiple-peaked switching in a nonlinear-optical loop mirror and present an experimental investigation of device cascading in the soliton regime based on a sequence of two independent nonlinear-optical loop mirrors. Cascading leads to an enhanced switching response with sharper switching edges, flattened peaks, and increased interpeak extinction ratios. We observe that pulses emerging from the cascade retain the sech2 temporal profile of a soliton with minimal degradation in the spectral characteristics
O-band QKD link over a multiple ONT loaded carrier-grade GPON for FTTH applications
We have successfully integrated an O-band commercial Quantum-Key-Distribution
(QKD) system over a lit GPON testbed that replicates a carrier-grade
Fiber-to-the-Home (FTTH) optical access network with multiple ONTs to emulate
real-life FTTH operational deployments.Comment: 3 page
Packet clock recovery using a bismuth oxide fiber-based optical power limiter
Abstract: We demonstrate an optical clock recovery circuit that extracts the line rate component on a per packet basis from short data packets at 40 Gb/s. The circuit comprises a Fabry-Perot filter followed by a novel power limiting configuration, which in turn consists of a 5m highly nonlinear bismuth oxide fiber in cascade with an optical bandpass filter. Both experimental and simulation-based results are in close agreement and reveal that the proposed circuit acquires the timing information within only a small number of bits, yielding a packet clock for every respective data packet. Moreover, we investigate theoretically the scaling laws for the parameters of the circuit for operation beyond 40 Gb/s and present simulation results showing successful packet clock extraction for 160 Gb/s data packets. Finally, the circuit's potential for operation at 320 Gb/s is discussed, indicating that ultrafast packet clock recovery should be in principle feasible by exploiting the passive structure of the device and the fsec-scale nonlinear response of the optical fiber
- …
