3,634 research outputs found
Intensity Thresholds and the Statistics of the Temporal Occurrence of Solar Flares
Introducing thresholds to analyze time series of emission from the Sun
enables a new and simple definition of solar flare events, and their
interoccurrence times. Rescaling time by the rate of events, the waiting and
quiet time distributions both conform to scaling functions that are independent
of the intensity threshold over a wide range. The scaling functions are well
described by a two parameter function, with parameters that depend on the phase
of the solar cycle. For flares identified according to the current, standard
definition, similar behavior is found.Comment: 5 pages, 4 figures, revtex
Renormalization-group Calculation of Color-Coulomb Potential
We report here on the application of the perturbative renormalization-group
to the Coulomb gauge in QCD. We use it to determine the high-momentum
asymptotic form of the instantaneous color-Coulomb potential and
of the vacuum polarization . These quantities are
renormalization-group invariants, in the sense that they are independent of the
renormalization scheme. A scheme-independent definition of the running coupling
constant is provided by , and of , where , and
is a finite QCD mass scale. We also show how to calculate the
coefficients in the expansion of the invariant -function , where all coefficients are scheme-independent.Comment: 24 pages, 1 figure, TeX file. Minor modifications, incorporating
referee's suggestion
Positivity violation for the lattice Landau gluon propagator
We present explicit numerical evidence of reflection-positivity violation for
the lattice Landau gluon propagator in three-dimensional pure SU(2) gauge
theory. We use data obtained at very large lattice volumes (V = 80^3, 140^3)
and for three different lattice couplings in the scaling region (beta = 4.2,
5.0, 6.0). In particular, we observe a clear oscillatory pattern in the
real-space propagator C(t). We also verify that the (real-space) data show good
scaling in the range t \in [0,3] fm and can be fitted using a Gribov-like form.
The violation of positivity is in contradiction with a stable-particle
interpretation of the associated field theory and may be viewed as a
manifestation of confinement.Comment: 5 pages, 6 figures; minor modifications in the text and in the
bibliograph
Geometry and topology of knotted ring polymers in an array of obstacles
We study knotted polymers in equilibrium with an array of obstacles which
models confinement in a gel or immersion in a melt. We find a crossover in both
the geometrical and the topological behavior of the polymer. When the polymers'
radius of gyration, , and that of the region containing the knot,
, are small compared to the distance b between the obstacles, the knot
is weakly localised and scales as in a good solvent with an amplitude
that depends on knot type. In an intermediate regime where ,
the geometry of the polymer becomes branched. When exceeds b, the
knot delocalises and becomes also branched. In this regime, is
independent of knot type. We discuss the implications of this behavior for gel
electrophoresis experiments on knotted DNA in weak fields.Comment: 4 pages, 6 figure
Roles of stiffness and excluded volume in DNA denaturation
The nature and the universal properties of DNA thermal denaturation are
investigated by Monte Carlo simulations. For suitable lattice models we
determine the exponent c describing the decay of the probability distribution
of denaturated loops of length l, . If excluded volume effects
are fully taken into account, c= 2.10(4) is consistent with a first order
transition. The stiffness of the double stranded chain has the effect of
sharpening the transition, if it is continuous, but not of changing its order
and the value of the exponent c, which is also robust with respect to inclusion
of specific base-pair sequence heterogeneities.Comment: RevTeX 4 Pages and 4 PostScript figures included. Final version as
publishe
Investigation of the structure and catalytic activity in olefin cyclopropanation of neutral and cationic dicopper complexes of 3,5-bis(pyridinylimino)benzoic acid.
Three neutral and one cationic copper(I) complexes with 3,5-bis(pyridinylimino)benzoic acid are
synthesized and characterized in solution and in the solid state by a variety of spectroscopic techniques and X-ray crystallography. The compounds are tested for their catalytic activity in olefin cyclopropanation reactions by means of ethyl diazoacetate
decomposition and prove to be moderately active with the ionic one being the most active and the most promising since for cyclohexene it reveals a considerable diastereoselectivity and a 90:10 exo:endo ratio of the final product
From waves to avalanches: two different mechanisms of sandpile dynamics
Time series resulting from wave decomposition show the existence of different
correlation patterns for avalanche dynamics. For the d=2 Bak-Tang-Wiesenfeld
model, long range correlations determine a modification of the wave size
distribution under coarse graining in time, and multifractal scaling for
avalanches. In the Manna model, the distribution of avalanches coincides with
that of waves, which are uncorrelated and obey finite size scaling, a result
expected also for the d=3 Bak et al. model.Comment: 5 pages, 4 figure
Caracterização genotípica de linhagem de corte e postura empregando chip de 60 k em região pleiotrópica do cromossomo 1.
The No-Pole Condition in Landau gauge: Properties of the Gribov Ghost Form-Factor and a Constraint on the 2d Gluon Propagator
We study the Landau-gauge Gribov ghost form-factor sigma(p^2) for SU(N)
Yang-Mills theories in the d-dimensional case. We find a qualitatively
different behavior for d=3,4 w.r.t. d=2. In particular, considering any
(sufficiently regular) gluon propagator D(p^2) and the one-loop-corrected ghost
propagator G(p^2), we prove in the 2d case that sigma(p^2) blows up in the
infrared limit p -> 0 as -D(0)\ln(p^2). Thus, for d=2, the no-pole condition
\sigma(p^2) 0) can be satisfied only if D(0) = 0. On the
contrary, in d=3 and 4, sigma(p^2) is finite also if D(0) > 0. The same results
are obtained by evaluating G(p^2) explicitly at one loop, using fitting forms
for D(p^2) that describe well the numerical data of D(p^2) in d=2,3,4 in the
SU(2) case. These evaluations also show that, if one considers the coupling
constant g^2 as a free parameter, G(p^2) admits a one-parameter family of
behaviors (labelled by g^2), in agreement with Boucaud et al. In this case the
condition sigma(0) <= 1 implies g^2 <= g^2_c, where g^2_c is a 'critical'
value. Moreover, a free-like G(p^2) in the infrared limit is obtained for any
value of g^2 < g^2_c, while for g^2 = g^2_c one finds an infrared-enhanced
G(p^2). Finally, we analyze the Dyson-Schwinger equation (DSE) for sigma(p^2)
and show that, for infrared-finite ghost-gluon vertices, one can bound
sigma(p^2). Using these bounds we find again that only in the d=2 case does one
need to impose D(0) = 0 in order to satisfy the no-pole condition. The d=2
result is also supported by an analysis of the DSE using a spectral
representation for G(p^2). Thus, if the no-pole condition is imposed, solving
the d=2 DSE cannot lead to a massive behavior for D(p^2). These results apply
to any Gribov copy inside the so-called first Gribov horizon, i.e. the 2d
result D(0) = 0 is not affected by Gribov noise. These findings are also in
agreement with lattice data.Comment: 40 pages, 2 .eps figure
Plio-Pleistocene geological evolution of the northern Sicily continental margin (southern Tyrrhenian Sea): new insights from high-resolution, multi-electrode sparker profiles
High-resolution seismic profiles were acquired in the north Sicily offshore region with an innovative, multi-tip sparker array which lacks ringing and has a base frequency around 600 Hz. The new data, combined
with published data, suggest that intra-slope and extensional basins formed as a consequence of the late
Miocene (?)–early Pliocene shortening and thrusting,
and the middle (?)–late Pliocene continental rifting affecting the internal side of the Sicilian-Maghrebian chain. Early (?) Pleistocene to Holocene high-amplitude
and high-frequency sea-level changes resulted in repeated
sub-aerial exposure and flooding of the shelf, and the deposition of cyclically arranged hemipelagic and shelf sediments. An uplift of the shelf could explain the non-preservation of the transgressive and of the lowstand wedge systems tracts in the oldest sequences
- …
