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2Sezione INFN, Università di Padova, I-35131 Padova, Italy

3Instituut voor Theoretische Fysica, K.U. Leuven, Belgium
4John-von-Neumann Institute for Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany
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Introducing thresholds to analyze time series of emission from the Sun enables a new and simple
definition of solar flare events and their interoccurrence times. Rescaling time by the rate of events, the
waiting and quiet time distributions both conform to scaling functions that are independent of the intensity
threshold over a wide range. The scaling functions are well-described by a two-parameter function, with
parameters that depend on the phase of the solar cycle. For flares identified according to the current,
standard definition, similar behavior is found.
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The solar corona is a very high Reynolds number turbu-
lent plasma producing intermittent bursts of radiation.
Plasma forces twist the coronal magnetic fields until
stresses are suddenly released, an avalanching process
governed by magnetic reconnection [1]. The released mag-
netic energy induces radiative emission that can be de-
tected as a flare. Flares exhibit scale invariant statistics. For
instance, the probability distribution of flare energies is a
power law spanning more than 8 orders of magnitude [2,3],
similar to the Gutenberg-Richter law for earthquakes. The
distribution of magnetic concentration sizes on the photo-
sphere is also scale invariant, and the coronal magnetic
network embodies a scale-free network [4,5]. In fact, a
model of self-organized criticality (SOC) with avalanches
of reconnecting flux tubes reproduces the observed scale-
free network structure [4,6].

As part of the debate on the characterization of magneto-
hydrodynamic turbulence in this regime [1,4–9], interest
has focused on comparing interoccurrence times between
flares with those in models of SOC. Analyses of flare
catalogs have indicated scale invariance of the waiting
times, but the behavior was found to vary with the phase
of the solar cycle [10] and with the methods used to
analyze the catalogs. (See, e.g., Refs. [10,11].) The prior
belief that avalanches occur with Poissonian waiting times
in the well-known Bak-Tang-Wiesenfeld (BTW) sandpile
model [12] (giving an exponential distribution of waiting
times) argued against the SOC hypothesis [8]. However,
including a finite detection threshold leads to a power law
distribution of quiet times even for the BTW model [13],
when durations and quiet times are measured with the same
clock. Since the turnover time scale for flux to be regen-
erated in the corona is of the order of 10 hours [14], while
the correlated waiting time intervals between flares can
extend up to years, the physical mechanism(s) responsible
for these correlations resides in the turbulent convective
region beneath the photosphere that generates magnetic
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flux and drives it into the corona. Systematic studies of
the temporal pattern of flares can give insight into the
dynamics of magnetic flux in the convective region, or
the solar dynamo, which is difficult to observe directly.

Here we show that the interoccurrence times between
flares has a hierarchical scaling structure when flares are
defined as intervals during which the emission exceeds a
given threshold. Rescaling time by the rate of these events,
we find universal behavior for the interoccurrence times,
which is independent of threshold. Both at solar maximum
and at solar minimum, the scaling function can be fitted by
a simple two-parameter function. This generalized
Lorentzian arises naturally within a simplified model based
on the time-dependent Poisson process. From this model,
one can naturally infer an exponential distribution of flar-
ing rates at solar maximum. At solar minimum, the distri-
bution of quiet—or laminar—times is accurately de-
scribed by on-off intermittency [15], a mechanism already
proposed to describe the solar cycle [16].

In extremely intermittent time series, such as, e.g., earth-
quakes, events are spikes separated by a smooth back-
ground and are easily and uniquely defined. This is not
the case for the solar data analyzed here, where the inten-
sity decays slowly after a local peak, allowing overlaps
with subsequent peaks. In this case, the introduction of a
threshold is deeply connected to the definition of events, as
indicated in Fig. 1.

The time series have been downloaded from the ‘‘Space
Physics Interactive Data Resource’’ World Wide Web site
[17], where each bin represents x-ray flux averaged over a
given time unit. Among the available signals from various
Geostationary Operational Environmental Satellites
(GOES) [17], we consider the time series of the average
soft x-ray flux measured in W=m2 with photons in the
range from 1 to 8 Å. See Table I for details. We have
also isolated two periods, roughly corresponding to the
most recent minimum (‘‘min’’) and maximum (‘‘max’’)
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FIG. 1 (color online). Explanation of various times used in this
work. Here the threshold intensity is I � 2
 10�6 W=m2.
According to the standard definition of flares, a1 and a2 would
be two separate events. In our case, they are separated if, for
instance, I � 3
 10�6 W=m2. This shows that the set of events
defined by different thresholds are not trivially related to each
other or to the flares listed in the standard catalogs.
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of the solar cycle. For comparison, we also analyze data in
publicly available flare catalogs [18], which identify events
with time intervals when the intensity is higher than a local
average of the signal.

In contrast, we define an event, or flare, to be simply the
interval during which the intensity exceeds a certain fixed
threshold. To compensate for fixing the threshold, we
study, in detail, the dependence on the threshold value
and obtain results that are independent of the threshold
over a wide range. Various times related to our definition of
events (durations, waiting and quiet times) are explained in
Fig. 1. One could expect differences when events defined
by our simple procedure or by the standard flare catalogs
are analyzed. However, we find that the statistical distri-
butions are mostly similar. Hence, we expect similar results
if other criteria are used to define interoccurence times,
such as the time difference between subsequent maxima in
the signal, referred to as the ‘‘laminar times’’ in Ref. [8].
TABLE I. Time series and selected intensity thresholds.

Alla minb maxc Symd

Start 1/1/1986 1/9/1995 1/1/2000
End 31/3/2004 31/12/1996 31/12/2003
Bin width (minutes) 5 1 1
Thresholds �W=m2� 2
 10�6 3
 10�8 2
 10�6 �

4
 10�6 10�7 4
 10�6 �

10�5 3
 10�7 10�5 �

3
 10�5 10�6 3
 10�5 4

10�4 3
 10�6 10�4 �

aBy concatenating signals of satellites GOES 6, 7, 8, and 10 [17],
we reconstruct the time series representing almost two solar
cycles. Since some data are missing, values in the empty bins are
set by the last recorded value before each of them. In this way,
flat plateaus of intensity are created, introducing a minimal bias
into the data.
bData from GOES 8, minimum of the solar cycle.
cData from GOES 10, maximum of the solar cycle.
dSymbol used in the figures to denote the corresponding data.
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Indeed, that definition also allows a systematic variation of
intensity threshold used to select maxima that could be
compared with the results shown here.

The number of events with intensity greater than or
equal to a given threshold I, N�� I�, is shown in
Fig. 2(a) for the entire data set, at min and at max. For
the whole catalog, the number of flares N�� I� behaves
approximately as I��, with � � 1:2�1� for intensities
greater than �10�6 W=m2. Scaling breaks down below
I � 10�6, where N�� I� increases with I. This clearly
shows that N�� I� is not the cumulative version of any
probability distribution, because flares at different thresh-
olds are different objects. In the two subregimes min and
max, we find power law behavior N�� I� � I��max , with
�max � 1:2�1�, for sufficiently large I. During the mini-
mum of the cycle, however, another scaling regime ap-
pears. Indeed, Nmin�� I� � I��min , with �min � 0:7�1�, for
I & 10�6 W=m2. Within statistical error, the exponent
�max agrees with the (cumulative) distribution of peak
fluxes measured by Aschwanden et al. [2], who obtained
�max � 1 � 2:08	 0:03.

The thresholds and associated symbols used by us to
define the events are given in Table I. For the entire data
record, we choose five thresholds with I > 10�6, where
N�� I� is a decreasing function of I. The same thresholds
are also used in the max regime. Since the flux at the
maximum of solar activity is typically 2 orders of magni-
tude greater than at the minimum, a definition of flares by
means of the same set of thresholds could be unfeasible.
Five different thresholds are used at solar minimum to
obtain reasonably good statistics.

We first discuss the distribution of duration times, P�td�.
It has a power law tail, with critical exponent �dur, which
extends to longer durations on lowering the threshold, as
shown in Fig. 2(b). Previous measurements using a differ-
ent definition of flares than that put forward here found
�dur � 2:17 to �dur � 2:54, depending on the range of
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FIG. 2 (color online). (a) Number of events with intensity
greater than a given threshold, for the entire record (*), at the
minimum (�) and maximum (
) of the cycle. The straight lines
represent power laws with the quoted exponent. (b) The distri-
bution of flare durations, for different thresholds, at min and max
of the solar cycle (the former shifted down by three units on the
log-scale). The symbols are explained in Table I, while the
curves are fits using Eq. (1).
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times fitted [19], while Litvinenko obtained �dur � 2 using
dimensional analysis [20].

However, P�td� crosses over from a power law at large
times to a constant regime at short times. The entire
distribution for all thresholds and all time periods is con-
sistent with the function

P�td� � �1� td=t�d�
��dur ; (1)

with �dur � 2:0�1� [21] and t�d � 10 min at solar mini-
mum, while �dur � 2:3�4� and t�d � 20 min at solar maxi-
mum [23].

The waiting and quiet time distributions are shown in
Fig. 3 for different thresholds and regimes. Each P�tw� is
similar to its respective P�tq�, especially at large times,
where both decay as power laws �t��. Hence, the scale-
free duration of flares is not giving peculiarities in the
passage from tq statistics to tw ones. The waiting/quiet
time exponents � at lower thresholds have been evaluated
in the three regimes. Within statistical error, these values,
indicated in Fig. 3, agree with the ones determined by
Wheatland and Litvinenko [10], who analyzed flare cata-
logs. However, one can observe that, by increasing the
threshold, both P�tw� and P�tq� evolve continuously, be-
coming flatter up to longer times for higher thresholds.
This aspect was not caught by any previous studies [10],
whose results were obtained without systematically vary-
ing any threshold.

A scaling argument similar to one recently put forward
by Bak et al. for waiting time statistics of earthquakes [24]
can unify in a single scaling function the waiting/quiet time
statistics. We argue that N�� I� provides the right rescal-
ing factor for the recurrence times, namely, the one that
gives a collapse onto a single curve of all the distributions
measured with different intensity thresholds I. In particu-
lar, we rescale the interoccurrence times by their average,
which is inversely proportional to the average rate of
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FIG. 3 (color online). The distributions of recurrence times,
progressively shifted along the y axes with the threshold, for
clarity. (a), (c), and (d) Distributions of waiting times, for the
entire record and at the minimum and maximum of the solar
cycle, respectively. (b) Distribution of quiet times for the entire
record. The power law tails are indicated with straight lines
whose slope is ��. The symbols are explained in Table I.
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events R�I� � N�� I�=�T [25], where �T is the time
span of the record. Thus, the distribution of waiting times
for a given threshold is given by

P�tw; I� � R�I�g�twR�I��: (2)

Unlike the universal waiting time distributions for earth-
quakes [24,25], but similar to P�td�, the scaling function g
for the flare waiting and quiet times is also well-described
by the function g�x� � �1� x=x����, as shown in Fig. 4.
Furthermore, the rescaled distributions have parameters
that depend on the phase of the solar cycle: For the whole
catalog, � ’ 2:16�5� and x� � 0:26. At the minimum of the
cycle � � 1:51�5� (x� � 0:02), while at the maximum � �
2:83�10� (x� � 0:85).

To compare with the standard definition of flares, we
repeat the above analysis using the GOES flare catalog
from 1975–2003 [18]. Now the threshold I represents the
peak intensity associated with the flare. The rate of events
with threshold I, R�I�, is the number of events in the
catalog with peak intensity greater than I divided by the
total duration of the catalog. Using the same thresholds as
before for the whole catalog and rescaling the distributions
using Eq. (2), we obtain the results shown in Fig. 4 (upper
group of data). In this case, power law behavior with an
exponent � � 2:19�5� (x� � 0:28) is observed at late
times, although at short times there are deviations from
data collapse at lower thresholds. The deviations may be
due to undercounting short waiting times following a large
flare, an obscuration effect previously pointed out by
Wheatland [26]. All of the data sets can also be fitted
with Lévy functions, which turn out to give comparable
results except for the waiting times at solar maximum,
where the fit with Lévy distributions is inferior [27]. We
choose here to focus on the fit using a single function
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FIG. 4 (color online). The rescaled distributions of waiting
times, arbitrarily shifted vertically to be distinguished. From
below, for the maximum of the solar cycle, for the minimum,
for the entire catalog, and for the GOES flare catalog. Fits as
described in the text are shown for the different phases.
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[Eq. (1)] since it appears to describe all the data sets
equally well.

Wheatland [7,10,26] has modeled the solar flare waiting
time distribution in terms of a time-dependent Poisson
process with a flaring rate ��t�. When the flaring rate varies
slowly over a waiting time tw, the distribution of waiting
times can be written as

P�tw; I� �
1
��I

Z 1
0
FI��� exp���tw��

2d�; (3)

where the average flaring rate ��I �
R
1
0 FI����d�, and

FI����� is the fraction of the time the rate to produce
flares exceeding intensity I is within �� of �. The function
we find to fit the data has fI��� � �2FI���= �� correspond-
ing to the Gamma distribution:

fI��� �
�
�x�

R�I�

�
��1

exp
�
�
�x�

R�I�

�
: (4)

A mathematical equivalence with the superstatistics for-
mulas of Beck and Cohen [22] can be made by mapping
�! �, tw ! E, and f��� ! f���. No necessary physical
connection is implied in this equivalence, since one could
just as well think of a subordination mechanism [28] as
being at the basis of Eq. (3). It is also worth remarking that
several turbulent systems have been analyzed recently
using the superstatistics framework. These include velocity
differences in Taylor-Couette flow [29], and intermittency
of the wind [30] or solar wind [31].

At solar maximum, the critical exponent � for the wait-
ing time distribution is close to � � 3. This implies that
distribution of flaring rates FI��� is close to exponential for
a range of I. Since high intensity flares predominately arise
from active regions during solar maximum, the origin of
this distribution could be investigated by tracking the flar-
ing rates of individual active regions.

At solar minimum, the critical exponent � � 3=2 for a
range of intensities I, implying that the distribution of flare
rates

Fmin
I ��� � �

�3=2 exp
�
�
�x�

R�I�

�
: (5)

This formula describes the probability distribution for the
number of offspring in a subcritical branching process [32].

Alternatively, the marginal behavior in on-off intermit-
tency also gives a distribution of laminar times with an
exponent � � 3=2 [15], in very good agreement with the
quiet time distribution at solar minimum. In fact, an inter-
mittent on-off dynamo [16] has been used to describe the
solar cycle and long term records of solar activity such as
grand minima. Our results lead us to speculate that such a
dynamo operating in a marginal state may also be able to
capture the quiet times of flares—excluding active regions.
Self-organized criticality may provide a mechanism for
this dynamo to sustain itself in a marginal state. Active
regions, superimposed on this fluctuating state, may rep-
05110
resent plasma instabilities in the on-off dynamo, with their
own emergent behavior.
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