14 research outputs found

    Fiberoptic endoscopic evaluation of swallowing in intensive care unit patients

    Get PDF
    Aspiration in critically ill patients frequently causes severe co-morbidity. We evaluated a diagnostic protocol using routine FEES in critically ill patients at risk to develop aspiration following extubation. We instructed intensive care unit physicians on specific risk factors for and clinical signs of aspiration following extubation in critically ill patients and offered bedside FEES for such patients. Over a 45-month period, we were called to perform 913 endoscopic examinations in 553 patients. Silent aspiration or aspiration with acute symptoms (cough or gag reflex as the bolus passed into the trachea) was detected in 69.3% of all patients. Prolonged non-oral feeding via a naso-gastric tube was initiated in 49.7% of all patients. In 13.2% of patients, a percutaneous endoscopic gastrostomy was initiated as a result of FEES findings, and in 6.3% an additional tracheotomy to prevent aspiration had to be initiated. In 59 out of 258 patients (22.9%), tracheotomies were closed, and 30.7% of all 553 patients could be managed with the immediate onset of an oral diet and compensatory treatment procedures. Additional radiological examinations were not required. FEES in critically ill patients allows for a rapid evaluation of deglutition and for the immediate initiation of symptom-related rehabilitation or for an early resumption of oral feeding

    Cholesterol-Lowering Effects of Probiotics and Prebiotics: A Review of in Vivo and in Vitro Findings

    Get PDF
    Probiotics are live microorganisms that promote health benefits upon consumption, while prebiotics are nondigestible food ingredients that selectively stimulate the growth of beneficial microorganisms in the gastrointestinal tract. Probiotics and/or prebiotics could be used as alternative supplements to exert health benefits, including cholesterol-lowering effects on humans. Past in vivo studies showed that the administration of probiotics and/or prebiotics are effective in improving lipid profiles, including the reduction of serum/plasma total cholesterol, LDL-cholesterol and triglycerides or increment of HDL-cholesterol. However, other past studies have also shown that probiotics and prebiotics had insignificant effects on lipid profiles, disputing the hypocholesterolemic claim. Additionally, little information is available on the effective dosage of probiotics and prebiotics needed to exert hypocholesterolemic effects. Probiotics and prebiotics have been suggested to reduce cholesterol via various mechanisms. However, more clinical evidence is needed to strengthen these proposals. Safety issues regarding probiotics and/or prebiotics have also been raised despite their long history of safe use. Although probiotic-mediated infections are rare, several cases of systemic infections caused by probiotics have been reported and the issue of antibiotic resistance has sparked much debate. Prebiotics, classified as food ingredients, are generally considered safe, but overconsumption could cause intestinal discomfort. Conscientious prescription of probiotics and/or prebiotics is crucial, especially when administering to specific high risk groups such as infants, the elderly and the immuno-compromised

    SPICA/SAFARI Sub-Kelvin Cryogenic Chain

    Get PDF
    Presented at the 16th International Cryocooler Conference, held May 17-20, 2008 in Atlanta, Georgia.SPICA, a Japanese led mission, is part of the JAXA future science program and is planned for launch in 2018. SPICA will perform imaging and spectroscopic observations in the 5 to 210 mm waveband. The SPICA payload features three instruments, one of which, SAFARI, is developed by a European based consortium. SPICA’s distinctive feature is to use an actively cooled telescope down to 4 K. In addition SPICA is a cryogen-free satellite and all the cooling will be provided by radiative cooling (L2 orbit) down to 30 K and by mechanical coolers for lower temperatures. The satellite will be launched warm and slowly reach its operating temperatures once in orbit. This warm launch approach allows to suppress any large liquid cryogen tank and to use the mass saved to launch a large diameter telescope (3.5 meters). This 4 K cooled telescope allows significantly reduced thermal radiation, offering superior sensitivity in the infrared region. The cryogenic system that enables this warm launch/cooled telescope concept is a key issue of the mission. This cryogenic chain features a number of cooling stages comprising passive radiators, Stirling coolers and several Joule Thomson loops, offering cooling powers at typically 20, 4.5, 2.5 and 1.7 K. The SAFARI detectors require cooling to temperatures as low as 50 mK, and thus the SAFARI instrument cooler will be operated from these heat sinks. It is composed of a small adiabatic demagnetization refrigerator (ADR) pre-cooled by a sorption cooler. This hybrid architecture allows a lower weight cooler able to reach 50 mK. Because the sorption cooler/ADR combination is probably the lightest solution to produce sub-Kelvin temperatures, it allows the stringent SAFARI mass budget to be met
    corecore