16 research outputs found

    Cost-effectiveness analysis of personalised versus standard dosimetry for selective internal radiation therapy with TheraSphere in patients with hepatocellular carcinoma

    Get PDF
    Aims: To perform a cost-effectiveness analysis (CEA) comparing personalised dosimetry with standard dosimetry in the context of selective internal radiation therapy (SIRT) with TheraSphere for the management of adult patients with locally advanced hepatocellular carcinoma (HCC) from the Italian Healthcare Service perspective. Materials and methods: A partition survival model was developed to project costs and the quality-adjusted life years (QALYs) over a lifetime horizon. Clinical inputs were retrieved from a published randomised controlled trial. Health resource utilisation inputs were extracted from the questionnaires administered to clinicians in three oncology centres in Italy, respectively. Cost parameters were based on Italian official tariffs. Results: Over a lifetime horizon, the model estimated the average QALYs of 1.292 and 0.578, respectively, for patients undergoing personalised and standard dosimetry approaches. The estimated mean costs per patient were €23,487 and €19,877, respectively. The incremental cost-utility ratio (ICUR) of personalised versus standard dosimetry approaches was €5,056/QALY. Conclusions: Personalised dosimetry may be considered a cost-effective option compared to standard dosimetry for patients undergoing SIRT for HCC in Italy. These findings provide evidence for clinicians and payers on the value of personalised dosimetry as a treatment option for patients with HCC

    PharmaCare 2018

    Get PDF
    [Italiano]: Il farmaco, nella sua accezione più ampia e generale, può essere ritenuto un bene sociale, la cui valenza simbolica e curativa varia in relazione alla dimensione ambientale e culturale nel quale si inserisce. In tal senso, le prescrizioni farmaceutiche rappresentano un indicatore privilegiato per la conoscenza del sistema salute di un determinato territorio, poiché costituiscono un punto di intersezione ideale tra la prospettiva medica e quella di mercato. Siffatte considerazioni hanno sollecitato l’elaborazione di questo Report che si pone, come obiettivi dichiarati, quello di essere uno strumento utile alla pianificazione di interventi di sanità pubblica, quanto quello di svolgere analisi approfondite sulle caratteristiche dei soggetti che usano i farmaci e sulle modalità di trattamento degli stessi, permettendo studi di appropriatezza prescrittiva su specifiche aree di rilevanza clinica e su specifiche coorti di soggetti. “PharmaCaRe Report 2018” è stato realizzato dal CIRFF (Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione) dell’Università degli Studi di Napoli Federico II, in collaborazione con la Direzione Generale della Tutela della Salute della Regione Campania, per delineare un quadro dettagliato circa il consumo e la prescrizione dei farmaci in Campania nel 2018. Questo Report intende infatti fornire una fotografia dettagliata dell’utilizzo che, in Campania, viene fatto dei farmaci in termini di spesa, volumi e tipologia. Le analisi dei dati prodotte offrono spunti importanti per correlare la prevalenza delle patologie nel territorio con il corrispondente utilizzo dei farmaci e suggeriscono un’interpretazione dei principali fattori che influenzano la variabilità nella prescrizione. La disponibilità di una banca dati che copre una popolazione assistibile di circa sei milioni di abitanti è d’altronde un potente strumento di ricerca per studiare gli effetti dell’utilizzo dei farmaci in condizioni di Real-World. La conoscenza delle dinamiche prescrittive, in termini qualitativi (appropriatezza d’uso), oltre che quantitativi (volumi di utilizzo) è la condizione necessaria per inquadrare in un contesto razionale la politica del farmaco, anche sotto il profilo della valutazione degli effetti degli interventi che il mercato, le normative o la cultura del farmaco sviluppano nel tempo. Per tali ragioni, “PharmaCaRe Report 2018” rappresenta un utile quanto prezioso supporto ai decisori per individuare strategie volte a ottimizzare l’allocazione delle risorse, nonché migliorare i percorsi di cura attraverso un monitoraggio costante, la promozione di più elevati standard di cura e l’uso sicuro, efficiente ed efficace dei farmaci ./[English]: In its broadest and most general sense, the drug can be considered a public resource, whose symbolic and curative value varies in relation to the environmental and cultural dimension in which it is embedded. In this sense, pharmaceutical prescriptions represent a privileged indicator for the knowledge of the health system of a given territory, since they constitute an ideal intersection point between the medical and the market perspective. Such considerations prompted the preparation of this Report. “PharmaCaRe Report 2018” has been produced by CIRFF (Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione) of the Federico II University of Naples, in collaboration with the Directorate-General for Health Protection of the Campania Region, to provide a detailed overview of the pharmaceutical consumption and prescriptions in Campania in 2018. This Report aims to provide a detailed picture of the use of medicines in the general population in Campania, in terms of expenditure, volumes and type. The analyses of the data produced offer important clues for correlating the prevalence of diseases in this area with the respective use of medicines and suggest an interpretation of the main factors influencing prescriptions' variability. The availability of a database covering a patient population of around six million is a powerful research tool for studying the effects of drug use in Real-World conditions. Knowledge of the dynamics of prescription, in qualitative terms (appropriateness of use), as well as quantitative (volumes of use) is the necessary condition to frame the drug policy in a rational context, also in terms of evaluating the effects of the interventions that the market, regulations or drug culture develop over time. For these reasons, “PharmaCaRe Report 2018” represents a useful and valuable tool for political decision-makers in identifying strategies aimed at optimizing the allocation of resources, as well as improving care pathways through constant monitoring, the promotion of higher standards of care and safe, efficient and effective use of drugs

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    Use of a Biostimulant to Mitigate Salt Stress in Maize Plants

    Get PDF
    Salinity is considered among the abiotic stresses most impacting agriculture for its ability to interfere with crop development and quality. For this reason, practices and innovations that could contain the deleterious effects of such stress are of pivotal importance for maintaining acceptable crop yields. In this context, this work has concerned the study of severe salt stress (100 mM NaCl) on maize seedlings and the effects of a plant biostimulant (Megafol–Meg) in helping plants to cope with this adversity. Biomass production, pigments, the content Na+ and K+, the accumulation of hydrogen peroxide (H2O2) and lipid peroxidation products (MDA), total phenolic compounds (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) were investigated in control samples, in samples treated with NaCl alone, and in samples treated with NaCl in combination with the biostimulant. The results showed that the biostimulant significantly mitigated the impact of the salt stress on shoot length and fresh weight, on chlorophyll and carotenoid contents, and reduced the amount of Na+ taken up by the species. Regarding the oxidative status, the biostimulated samples revealed lower amounts of H2O2 and MDA, while maize seedlings grown with NaCl alone exhibited the highest increases in the TPC, ABTS, and FRAP. The explanation for these effects is provided by highlighting the effectiveness of the biostimulant in avoiding Na+ accumulation, which resulted in a lower content of H2O2, MDA, TPC, and antioxidant activity

    Application of game theory and evolutionary algorithm to the regional turboprop aircraft wing optimization

    No full text
    Nash equilibrium and evolutionary algorithm are used to optimize a wing of a regional turboprop aircraft, with the aim to compare different optimization strategies in the aircraft design field. Since the aircraft design field is very complex in terms of number of involved variables and space of analysis, it is not possible to perform an optimization process accounting for all possible parameters. This leads to the need to reduce the number of the variables to the most significant ones. A multi-objective optimization approach is here performed, paying attention to the variables which mainly influence the objective functions. Results of Nash-Genetic algorithm are compared against those of both a typical Pareto front and a scalarization, showing that the proposed approach locates almost all solutions on the Pareto front, while the scalarization results are confined only in a zone of this front. The optimization elapsed time for a single optimization point is less than 32% of an entire Pareto front, but the designer must initially choose the players’ cards assignment

    Determination of total silicon and SiO2 particles using an ICP-MS based analytical platform for toxicokinetic studies of synthetic amorphous silica

    No full text
    Synthetic amorphous silica (SAS), manufactured in pyrogenic or precipitated form, is a nanomaterial with a widespread use as food additive (E 551). Oral exposure to SAS results from its use in food and dietary supplements, pharmaceuticals and toothpaste. Recent evidence suggests that oral exposure to SAS may pose health risks and highlights the need to address the toxic potential of SAS as affected by the physicochemical characteristics of the different forms of SAS. For this aim, investigating SAS toxicokinetics is of crucial importance and an analytical strategy for such an undertaking is presented. The minimization of silicon background in tissues, control of contamination (including silicon release from equipment), high-throughput sample treatment, elimination of spectral interferences affecting inductively coupled plasma mass spectrometry (ICP-MS) silicon detection, and development of analytical quality control tools are the cornerstones of this strategy. A validated method combining sample digestion with silicon determination by reaction cell ICP-MS is presented. Silica particles are converted to soluble silicon by microwave dissolution with mixtures of HNO3, H2O2 and hydrofluoric acid (HF), whereas interference-free ICP-MS detection of total silicon is achieved by ion-molecule chemistry with limits of detection (LoDs) in the range 0.2–0.5 µg Si g−1 for most tissues. Deposition of particulate SiO2 in tissues is assessed by single particle ICP-MS105Nanotechnology in Agriculture and Food IndustryThis work arises from the NANOGENOTOX Joint Action which has received funding from the European Union, in the framework of the Health Programme. The NANOGENOTOX Joint Action was co-funded by the Executive Agency for Health and Consumers (Grant Agreement 2009 21 01). This publication reflects only the authors’ views and the Executive Agency for Health and Consumers (now CHAFEA) is not liable for any use that may be made of the information contained therei

    Osteoperiosteal free fibula flap as an effective preprosthetic reconstructive option in severe jaw atrophy and oncological resection [Il lembo libero osteoperiosteo di fibula come opzione ricostruttiva preprotesica nelle atrofie severe e nei difetti post oncologici dei mascellari]

    Get PDF
    The gold standard in modern surgical treatment of patients with severe maxillo-mandibular atrophy must include the aim to achieve restoration of function and aesthetics with immediate reconstruction of the oro-mandibular defects. The medical records of 14 patients who were treated in a 5-year period (2010-2014) at our department with severe maxillary and mandibular atrophy, and reconstructed by vascularised free fibula flap were reviewed. Among the former, a total of 14 patients underwent maxillary and mandibular reconstruction using the osteoperiosteal fibula free flap. No major complications were reported. The main advantage of this technique is that it allows the formation of keratinised gengiva, which provides the best implantological options. The only disadvantage of the technique is that the wounds have to heal for second intention, and for this reason patients have to undergo strict follow-up for the first months after the operation. The aim of this article is to evaluate the efficiency of the technique in bone reconstruction after jaw resection or severe atrophy. © 2015, Pacini Editore S.p.A. All rights reserved
    corecore