94 research outputs found

    Matroids over a ring

    Get PDF
    We introduce the notion of a matroid M over a commutative ring R, assigning to every subset of the ground set an R-module according to some axioms. When R is a field, we recover matroids. When R D Z, and when R is a DVR, we get (structures which contain all the data of) quasi-arithmetic matroids, and valuated matroids, i.e. tropical linear spaces, respectively. More generally, whenever R is a Dedekind domain, we extend all the usual properties and operations holding for matroids (e.g., duality), and we explicitly describe the structure of the matroids over R. Furthermore, we compute the Tutte-Grothendieck ring of matroids over R. We also show that the Tutte quasi-polynomial of a matroid over Z can be obtained as an evaluation of the class of the matroid in the Tutte-Grothendieck ring

    Raindrop Size Distribution variability from high resolution disdrometer networks

    Get PDF
    The characteristics of the raindrop size distribution (DSD) have been widely studied since Marshall and Palmer (1948) introduced specific version of exponential distribution for the observed size spectra, based on measurements of raindrops records on dyed filter papers. Across the decades, interest in measuring and studying rain DSD has grown due to applications in cloud physics studies, in calibration of space-borne and ground-based microwave active precipitation sensors and in soil science and agriculture. The study of DSD and of the processes that determine it, are always been challenging from both theoretical and experimental point of view. Moreover, the study of DSD in natural rain is hindered by the difficulties (logistic and economic) in the management of dense disdrometer networks. Based on the unprecedented datasets available, this Thesis aims to contribute in characterizing, from a microphysical point of view, the precipitation structure and the processes that generate it. In particular, the vertical and horizontal DSD variability is analyzed, starting from the study of collisional break-up mechanism in natural rain. The signature of collisional break-up, first evidenced in a particular shape of Doppler power spectrum of a microwave disdrometer, is then searched and characterized in DSD spectrum, assessing its variability with altitude. The horizontal variability of DSD is studied both analyzing the occurrence of equilibrium DSD among the different datasets available and evaluating the correlation of integral and non-integral DSD parameters at small scale. In the first part of the Thesis, an overview on past and recent studies on different aspects of DSD is given. The main mechanisms that govern the rain development are firstly summarized, then the DSD parameterization and the DSD variability in natural rain are discussed. Finally, the description of the characteristics of instruments and of the field campaigns considered in this work are presented. The vertical variability of DSD has been studied thanks to the development of specific algorithms able to detect and characterize both the collisional break-up and the equilibrium DSD. I analyzed the signature of collisional break-up both on the Pludix Doppler power spectrum and on DSD spectrum. The analysis is carried out developing two algorithms that detect the collisional break-up as well as estimate the break-up diameter as function of altitude. The results show a decrease of break-up diameter with altitude, due to the reduction of air density, that plays a critical role in the energetic balance of the collision between two raindrops. The analysis also indicates that, regardless the altitude, the collisional break-up occurs if the kinetic energy of the collision exceeds 12.2 ÎŒJ. The results, together with the detailed analysis of some case study at high altitude (over the Tibetan Plateau), show also that the dominance of the break-up process is required to reach the equilibr ium DSD. The study of the DSD variability was deepened focusing the analysis on the 2DVD DSD properties to evaluate the occurrence of equilibrium DSD in natural rain. Another algorithm, based on 2DVD characteristics, is set up to automatically detect the equilibrium DSD by using the great amount of high quality disdrometric data available from the datasets of Ground Validation program of NASAGlobal Precipitation Measurement mission. The results shows a good agreement between the experimental equilibrium DSD and the equilibrium DSD obtained by theoretical models. The analysis shows also that the equilibrium DSD is mainly reached during convective rain and its dependence on season and latitude (no equilibrium DSD is observed at high latitude - 60°N). The occurrence of equilibrium DSD is a rare event in natural rain (maximum 8% of selected minutes), while an increase is observed if transition situations are considered. The results are also analyzed to estimate the goodness of fitting the equilibrium DSD by a three parameter gamma distribution, that is widely used to parameterize the DSD. The low correlation between the experimental DSDs and the gamma distribution evidences that the gamma is not the best parametric form to fit the experimental equilibrium DSD. The behavior of the rain and DSD parameters is studied as function of break-up occurrence and shows that they can be considered an additional indicators to screen out the situations that are not expected to reach the equilibrium DSD. The data collected from two high-resolution disdrometric dataset are used to study the horizonta l DSD spatial variability at small scale. The size of the measuring fields are different but comparable with a ground radar pixel or satellite footprint and this makes the analysis of the particular interest . The rainfall rate and other DSD parameters are analyzed using a three parameter exponential function to estimate their correlation at small scale. The estimated correlation distance shows that the most of the rain and DSD parameters are correlated within a radar pixel or satellite footprint (generally, the integral DSD parameters – rainfall rate, radar reflectivity, liquid water content, etc. – are less correlated than the non integral DSD parameters – maximum diameter, mean mass diameter, etc.). The root mean square error evidences a very good fit of the function used with respect the experimental data, indicating a good reliability of data. The results presented in this Thesis, first, increase the knowledge of break-up phenomenon and its effect on the DSD up to reach the equilibrium DSD, and can be used to improve the parameterizat ion form for break-up and equilibrium DSD occurrence and the modeling of cloud and precipitat ion mechanisms. Secondly, they give reliable indications about the spatial variability of the structure of precipitation within a radar pixel and/or a satellite footprint, with an immediate application to the interpretation of remote sensing measurements to improve precipitation retrieval from radar/satellite measurements, especially after the launch of Dual-frequency Polarization Radar in the frame of Global Precipitation Measurement mission. The results obtained in this Thesis lead to the study of many other aspects that can be investigated to better characterize the precipitation. The time evolution of the precipitation with particular emphasis to the time necessary to the break-up to modify the DSD to reach equilibrium DSD can be investigated by using the algorithms proposed here. A new parameterization of DSD affected by break-up and of equilibrium DSD is necessary to improve the remote sensing of precipitation. Finally, a deeper study of DSD spatial variability is needed to have more information about rain structures at small/medium spatial scales, by different techniques and datasets in different season/location

    GPM-DPR Observations on TGFs Producing Storms

    Get PDF
    Unique spaceborne measurements of the three-dimensional structure of convective clouds producing terrestrial gamma ray flashes (TGFs) were performed using both active and passive microwave sensors on board the Global Precipitation Measurement (GPM)-Core Observatory satellite, finding coherent features for nine TGF-producing storms. The delineation of cloud structure using the radar reflectivity factor shows convective cells with significant vertical development and thick layers with high ice content. Compared to other cumulonimbus clouds in the tropics, the TGFs counterparts have higher reflectivity values above 3 and 8 km altitude showing in all cases a cumulonimbus tower and the TGFs locations are very close, or coincident, to these high Z columns, where reflectivity exceeds 50dBz. Using the GPM Microwave Imager radiometer, most thunderstorms show a very strong depression of polarization corrected temperature (PCT) at channel 89GHz, indicating a strong scattering signal by ice in the upper cloud layers. At channel 166GHZ, the difference between vertical and horizontal brightness temperature signal always returns positive values, from 0.2 up to 13.7K indicating a complex structure with randomly/vertically oriented ice particles. The PCT was used to characterize the analyzed storms in terms of hydrometeor types, confirming in 7/9 cases a high likelihood of hail/graupel presence. To perform analysis on the TGFs parent flashes, radio atmospherics data from the Earth Networks Total Lightning Network lightning network were used. Waveform data indicate that all cases are intra-cloud events and TGFs typically take place during the peak of flash rate production. Finally, the analysis of the most intense event is shown

    Time evolution of storms producing terrestrial gamma-ray flashes using era5 reanalysis data, gps, lightning and geo-stationary satellite observations

    Get PDF
    In this article, we report the first investigation over time of the atmospheric conditions around terrestrial gamma-ray flash (TGF) occurrences, using GPS sensors in combination with geostationary satellite observations and ERA5 reanalysis data. The goal is to understand which characteristics are favorable to the development of these events and to investigate if any precursor signals can be expected. A total of 9 TGFs, occurring at a distance lower than 45 km from a GPS sensor, were analyzed and two of them are shown here as an example analysis. Moreover, the lightning activity, collected by the World Wide Lightning Location Network (WWLLN), was used in order to identify any links and correlations with TGF occurrence and precipitable water vapor (PWV) trends. The combined use of GPS and the stroke rate trends identified, for all cases, a recurring pattern in which an increase in PWV is observed on a timescale of about two hours before the TGF occurrence that can be placed within the lightning peak. The temporal relation between the PWV trend and TGF occurrence is strictly related to the position of GPS sensors in relation to TGF coordinates. The life cycle of these storms observed by geostationary sensors described TGF-producing clouds as intense with a wide range of extensions and, in all cases, the TGF is located at the edge of the convective cell. Furthermore, the satellite data provide an added value in associating the GPS water vapor trend to the convective cell generating the TGF. The investigation with ERA5 reanalysis data showed that TGFs mainly occur in convective environments with unexceptional values with respect to the monthly average value of parameters measured at the same location. Moreover, the analysis showed the strong potential of the use of GPS data for the troposphere characterization in areas with complex territorial morphologies. This study provides indications on the dynamics of con-vective systems linked to TGFs and will certainly help refine our understanding of their production, as well as highlighting a potential approach through the use of GPS data to explore the lightning activity trend and TGF occurrences.publishedVersio

    Cuts and flows of cell complexes

    Get PDF
    We study the vector spaces and integer lattices of cuts and flows associated with an arbitrary finite CW complex, and their relationships to group invariants including the critical group of a complex. Our results extend to higher dimension the theory of cuts and flows in graphs, most notably the work of Bacher, de la Harpe and Nagnibeda. We construct explicit bases for the cut and flow spaces, interpret their coefficients topologically, and give sufficient conditions for them to be integral bases of the cut and flow lattices. Second, we determine the precise relationships between the discriminant groups of the cut and flow lattices and the higher critical and cocritical groups with error terms corresponding to torsion (co)homology. As an application, we generalize a result of Kotani and Sunada to give bounds for the complexity, girth, and connectivity of a complex in terms of Hermite's constant.Comment: 30 pages. Final version, to appear in Journal of Algebraic Combinatoric

    We All Know How, Don’t We? On the Role of Scrum in IT-Offshoring

    Get PDF
    Part 2: Creating Value through Software DevelopmentInternational audienceOffshoring in the IT-industry involves dual interactions between a mother company and an external supplier, often viewed with an implicit perspective from the mother company. This article review general off shoring and IT offshoring literature, focusing on the proliferation of a globally available set of routines; Scrum and Agile. Two cases are studied; a small company and short process and a large mother company with a long process. The interactions of the set ups shows that global concepts like Scrum and Agile are far from a common platform. The “well known” concepts are locally shaped and the enterprises have mixed experiences

    Technology and Sociomaterial Performation

    Get PDF
    Part 1: IS/IT Implementation and AppropriationInternational audienceOrganizational researchers have acknowledged that understanding the relationship between technology and organization is crucial to understanding modern organizing and organizational change [1]. There has been a significant amount of debate concerning the theoretical foundation of this relationship. Our research draws and extends Deleuze and DeLanda’s work on assemblages and Callon’s concept of performation to investigate how different sociomaterial practices are changed and stabilized after the implementation of new technology. Our findings from an in-depth study of two ambulatory clinics within a hospital system indicate that “perform-ing” of constituting, counter-performing, calibrating, and stratifying explained the process of sociomaterial change and that this process is governed by an overarching principle of “performative exigency”. Future studies on sociomateriality and change may benefit from a deeper understanding of how sociomaterial assemblages are rendered performative
    • 

    corecore