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Dott. Ali Tokay

Anni 2012/2014





Contents

Introduction v

1 The Drop Size Distribution (DSD) 1

1.1 The precipitation formation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Cloud particles formation . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Cloud particles interactions . . . . . . . . . . . . . . . . . . . . 7

1.1.3 The rain drop formation mechanisms . . . . . . . . . . . . . . . 9

1.2 The collisional break-up . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 The equilibrium drop size distribution (ED) . . . . . . . . . . . . . . . 19

1.4 The DSD parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 DSD and radar parameters . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6 DSD Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Instrumentation and field campaigns 37

2.1 Instruments overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Instruments description . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Pludix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.2 2DVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.3 Particle Size Velocity disdrometer (Parsivel) . . . . . . . . . . . 53

i



ii Contents

2.2.4 Micro Rain Radar (MRR) . . . . . . . . . . . . . . . . . . . . . 57

2.2.5 Joss-Waldvogel (JW) . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 Field campaigns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Collisional Break-up: detection and analysis 69

3.1 Pludix power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Break-up detection algorithms . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Power Spectrum (PS) algorithm . . . . . . . . . . . . . . . . . . 72

3.2.2 DSD Spectrum (DS) algorithm . . . . . . . . . . . . . . . . . . 74

3.3 Dependence of collisional break-up on altitude . . . . . . . . . . . . . . 75

3.3.1 PS algorithm: results . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.2 CKE limiting value . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.3 DS algorithm: results . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Break-up: case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Collisional Break-up and Equilibrium DSD 95

4.1 SLOPE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.1 SLOPE algorithm: 2DVD results . . . . . . . . . . . . . . . . . 98

4.1.2 SLOPE algorithm: Parsivel results . . . . . . . . . . . . . . . . 103

4.2 Evaluation of gamma fit . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Integral rain and DSD parameters . . . . . . . . . . . . . . . . . . . . . 108

5 Small scale DSD spatial variability 115

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Results: Wallops dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.2 Correlation distance analysis . . . . . . . . . . . . . . . . . . . . 124



Contents iii

5.2.3 Sensitivity Studies - Partial beam filling . . . . . . . . . . . . . 135

5.3 Results: MC3E dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.2 Correlation distance analysis . . . . . . . . . . . . . . . . . . . . 142

5.3.3 Sensitivity Studies - Partial beam filling . . . . . . . . . . . . . 148

Conclusions and Outlooks 151

Acknowledgments 155

Bibliography 157





Introduction

The characteristics of the raindrop size distribution (DSD) have been widely studied

since Marshall and Palmer (1948) introduced specific version of exponential distribu-

tion for the observed size spectra, based on Marshall et al. (1947) measurements of

raindrops records on dyed filter papers. Across the decades, interest in measuring and

studying rain DSD has grown due to applications in cloud physics studies, in calibra-

tion of space-borne and ground-based microwave active precipitation sensors and in soil

science and agriculture. Fernandez-Raga et al. (2011) show that since 1963, there has

been an increase in the number of articles published on disdrometers, which in the last

20 years triplicated in number with respect to the previous decade.

The study of DSD and of the processes that determine it, are always been challenging

from both theoretical and experimental point of view: experimental difficulties are,

from one side, due to the impossibility to fully reproduce the cloud environment in lab-

oratory, and to collect high quality and consistent measurements in natural rain. Even

if many projects addressing different aspects of the DSD have been carried out, the

data collected by disdrometer networks are very limited, due to the difficulties (logistic

and economic) in the management of such networks. In the last years, the Atmospheric

Physics group of the University of Ferrara took part in several experimental projects

and collaborations that made available a large, high quality disdrometric data amount.

v



vi Introduction

In particular, the participation to the CEOP-AEGIS project and the collaboration with

NASA, in the frame of GPM mission GV program, supplied unprecedented disdromet-

ric datasets for both number of installed instrument and for their geographic position.

Based on this unprecedented dataset, this Thesis work aims to contribute in character-

ize, from a microphysical point of view, the precipitation structure and the processes

that generate it. In particular, the vertical and horizontal DSD variability is analyzed,

starting from the study of effects on the DSD of the collisional break-up mechanism in

natural rain. The signature of collisional break-up, first evidenced by particular shape

of Doppler power spectrum of a microwave disdrometer, is then searched and character-

ized in DSD spectrum, assessing its variability with altitude. The horizontal variability

of DSD is studied both analyzing the occurrence of equilibrium DSD among the differ-

ent datasets available and evaluating the correlation of integral and non-integral DSD

parameters at small scale.

Chapter 1 gives an overview on past and recent studies on different aspects of DSD,

from the main mechanisms that govern the rain development (both from experimental

and theoretical/laboratory point of view) to its parameterization up to the DSD vari-

ability in natural rain.

Chapter 2 describes the characteristics of instruments, of the field campaigns and of

the data used in the Thesis.

Chapter 3 analyzes the signature of collisional break-up both on the Pludix Doppler

power spectrum and on DSD spectrum. The analysis is carried out developing two al-

gorithms, that detect the collisional break-up as well as estimate the break-up diameter

as function of altitude. In this chapter the evolution of rain events highlighting the

development of break-up up to the reaching of equilibrium DSD is also shown.

In the chapter 4 the analysis is focused on the 2DVD DSD properties to evaluate the

occurrence of equilibrium DSD in natural rain. Another algorithm, based on 2DVD
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characteristics, is set up to automatically detect the equilibrium DSD. The results are

also analyzed to estimate the goodness of fitting of the equilibrium DSD by a three

parameter gamma distribution. The behavior of the integral rain parameters is studied

as function of break-up occurrence.

In the chapter 5 the data collected from two disdrometric dataset are used to study

the horizontal DSD spatial variability at small scale. The size of the measuring fields

are comparable with a ground radar pixel or satellite footprint. The rainfall rate and

other DSD parameters are analyzed using a three parameter exponential function to

estimate their correlation at small scale.

In the last section the conclusions about this Thesis are reported.





Chapter 1

The Drop Size Distribution (DSD)

The knowledge of Particle Size Distribution (PSD) is of fundamental importance for

the study of cloud and precipitation microphysics. The hydrometeors of different phase

and shape within a cloud or a precipitation layer, are characterized by a peculiar PSD

, which is the results of the physical processes that originated their formation. In this

Thesis the liquid phase of precipitation has been analyzed with particular interest to

the properties and characteristics of Drop Size Distribution (DSD). The DSD, often

indicated as N(D), is defined as the number of drops as function of drop diameter and

it is usually referred to unitary volume, and generally its unit of measure is m−3mm−1,

that is, the number of drops per cubic meter per millimeter diameter interval.

Even if the intensity and the amount of a rainfall episode are the most relevant param-

eters in most of the applications, from the physical point of view the property that best

characterizes the rainfall is the DSD. The DSD is the starting point to calculate all the

parameters that characterize a precipitation episode (i.e. the DSD integral parameters,

such as rainfall rate, liquid water content, reflectivity, drops kinetic energy, etc...) that

have many practical applications, and are strongly correlated to the precipitation for-

1



2 The Drop Size Distribution (DSD)

mation processes and the cloud structure.

Interest in DSD has developed sporadically through the years since about 1895 (Weis-

ner,1895), while the main mechanisms responsible of precipitation formation have been

studied since the late 1940’s when Marshall and Palmer (1948) were the first to quan-

titatively measure the DSD from natural rain. They found that the distribution of

number of drops as function of drop size was roughly exponential (Figure 1.1).

Figure 1.1: DSD measured by Marshall and Palmer (1948).

This chapter gives an overview on past studies on different aspects of DSD, from the

main mechanisms that govern the rain development (both from experimental and the-

oretical/laboratory point of view) to its parameterization up to the DSD variability in

natural rain.
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1.1 The precipitation formation

1.1.1 Cloud particles formation

To understand how the processes involved in the rain formation can modify the DSD, it

is important to have an overview of the mechanisms involved in the cloud development

that define the microphysical properties of the cloud. Since the aim of this Thesis is

the study of the characteristics of raindrops population, regardless the cloud type from

which they were formed, only the main cloud properties will be discuss here.

Since the clouds can be made by particles in ice or liquid phase, there can be two

different processes that lead to the cloud formation:

❼ condensation of water vapor;

❼ direct formation of ice crystals by water vapor sublimation.

Here, we are interested to analyze the processes that lead a population of water/ice

particle to evolve in rain. A cloud is formed when warm/moist air is raised above the

Lifted Condensation Level (LCL), where the water vapor becomes saturated and, in

presence of a suitable aerosol population, the two above processes can start. A first,

basic classification of cloud structure can be done according the vertical velocity of the

raising air. Generally, a cloud with higher speed of the vertical air motion has a deeper

vertical development, while a cloud with lower values has a less vertical development.

Both cloud types can overpass the freezing level (0➦C level) and are usually formed by

particles both in solid and in liquid phase. It can be remarked that this statement is

referred to mid-latitude clouds, since the data used for this Thesis were collected at the

mid-latitude; while, for example, the clouds in the tropics usually have a deeper vertical

development and can also be made up by particle in liquid phase only. However, ex-

ample of clouds formed by just one particles phase are found also at mid-latitude, like
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the cirrus (high and thin clouds composed by ice crystals) or the fair weather cumulus

(clouds composed by particle in liquid phase only). Regardless if clouds are formed by

particles in liquid or solid phase, at the first stage of the cloud development they are

both characterized by diffusive growth.

The cloud development processes occur in supersaturated air (the saturation is defined

as the ratio between the water vapor pressure and the saturated vapor pressure over a

plane surface of water) and are characterized by a transition phase, that is possible if

the nucleation takes place. The nucleation can be homogeneous if the transition phase

occur inside a pure substance, water vapor in this case, otherwise if the water vapor

contains aerosol particles the nucleation is called heterogeneous. The rate of formation

of drops deriving from the nucleation process is the nucleation rate.

Figure 1.2: Nucleation rate as function of the saturation ratio for a temperature T=270 K
(Prodi and Battaglia, 2002).

The figure 1.2 reports the nucleation rate as function of the saturation value calcu-

lated for a temperature T=270 K. The nucleation rate increases from undetectably
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small values to extremely large values over a very narrow range of saturation values.

The saturation value at which this rise occurs is in the range of 4-5, thus the air must be

supersaturated by 300-400% for a drop of pure water to be nucleated homogeneously.

Since saturation in the atmosphere seldom exceeds 100%, one concludes that homoge-

neous nucleation of water drops plays no role in natural clouds.

Homogeneous nucleation of ice from the liquid phase is analogous to nucleation of

drops from the vapor phase. Theoretical and empirical results indicate that homoge-

neous nucleation of liquid water occurs at temperatures lower than about -35 to -40➦C,

depending on the size of the drops. This threshold lies within the temperature range

of natural clouds, which may have cloud-top temperatures below -80➦C (Houze, 1993).

It is therefore possible, in a natural cloud, to have unfrozen liquid, supercooled drops

in the temperature range of 0➦C to about -40➦C, while any liquid drop freezes sponta-

neously by homogeneous nucleation below this temperature.

In principle, an ice particle may be nucleated directly from the vapor phase in the same

manner as a drop. Theoretical estimates of the rate at which molecules in the vapor

phase aggregate to form ice particles indicate, however, that nucleation occurs only at

temperatures below -65➦C and at supersaturations ∼1000%. Such high supersatura-

tions do not occur in the atmosphere.

Heterogeneous nucleation, therefore, is the process whereby cloud drops actually form.

If the surface tension between the water and the nucleating particle is relatively low, the

nucleus is said to be wettable, and the water may form a spherical cap on the surface

of the particle. A particle onto which the molecules collect in this manner is referred

to as aCloud Condensation Nucleus (CCN). Different particles type can be assumed

as CCN and depending on their properties the nucleation rate efficiency changes. So,

for example, the nucleation on ions requires supersaturation values much smaller than

nucleation on uncharged particles (especially for small drop diameter); or, for example,
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if a CCN is insoluble in water, the physics governing the survival of an embryonic cloud

droplet are the same as in the case of homogeneous nucleation and the nucleation rate

decreases with respect to the case the CCN is a soluble particle.

If the aggregated water molecules form a liquid film completely surrounding a parti-

cle, then a complete droplet is formed whose radius is larger than it would be in the

absence of the nucleus. The larger such a nucleus is, the more likely is the survival

of a drop formed by a film around it. For this reason, the larger the aerosol particle,

the more likely it is to act as a CCN. There are generally more than enough wettable

aerosol particles in the air to accommodate the formation of cloud droplets. However,

the physics of the nucleation process just described indicate that the first droplets in a

cloud will tend to form around the largest and most soluble CCN (for example NaCl

crystals are efficient CCN). The sizes and compositions of the aerosol particles in the

air thus have a key role on the size distribution of particles nucleated in a cloud.

The cloud droplets formed by nucleation grow for vapor diffusion producing a fairly

uniform distribution where the droplet radius generally ranges between 1 and 10 µ

m. In the convective clouds, with high vertical velocity (updraft), the diffusive growth

maintains its efficiency for droplet radius up to 50 µm. Once the droplets reach these

dimensions, they begin to have a not negligible fall velocity that allows the drops to

interact with each others.

Unlike the liquid heterogeneous nucleation, the ice crystals do not form on all the aerosol

particle types found in air because the molecules of the solid phase should have a lat-

tice structure similar to that of ice to support the nucleation; an ice nucleus composed

by amorphous material cannot nucleate the ice phase fron the vapour phase. As for

CCN, particles in the air on which ice crystals are able to form are called Ice Nuclei

(IN). Depending on aerosol composition, type and size distribution, there are several

processes that lead to the formation of an ice particle. An ice nucleus contained within
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a supercooled drop may initiate heterogeneous freezing when the temperature of the

drop is lowered to the value at which the nucleus can be activated and the ice phase

nucleation starts. This process is referred to as immersion freezing. Drops may also be

frozen at the time that an ice nucleus in the air comes into contact with a supercooled

drop: this process is called contact nucleation.

Finally, the ice may be formed on a nucleus directly from the vapor phase, in which case

the process is called deposition nucleation. This process requires the supersaturation

of air with respect to ice. The probability of ice particle nucleation increases with de-

creasing temperature and that substances possessing a crystal lattice structure similar

to that of ice is the most likely to serve as a nucleating surface. In this respect, ice itself

provides the best nucleating surface; whenever a supercooled drop at any temperature

≤ 0➦C comes into contact with a surface of ice it immediately freezes. The diffusion

growth of ice crystals is similar to the diffusion growth of droplets, but the parame-

terization of the great variety of crystals shape increases the difficulty to analytically

describe the process. Like for the liquid phase case, when the ice crystal reaches dimen-

sion such that to have an appreciable fall velocity, the aero dynamic capture processes

became important.

1.1.2 Cloud particles interactions

When the cloud droplets falling at different vertical velocity interact, the first process

that takes place is the collision. As a result of collision, the drops can coalesce or

bounce off, according to the energetic balance of the collision. The coalescence takes

place when the two colliding drops merge in one larger drops. So, for example two very

small colliding drops have lower probability to coalesce compared to two colliding drop
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with more marked size difference .

In the same way, the collection growth of ice crystal happens when they begin to move

with respect to the air flow, but its description is more complicated than for water

droplets because of the greater number of crystal shapes that can be formed and the

resulting greater number of possible interactions.

While the drop-drop collision leads to the formation of a particle of the same type of

the merging particles (drop), if an ice crystal is involved in the collection process, the

resulting particle can be different from the colliding particles. The different collision

types result in different final particles, as listed below:

❼ drop-crystal: if the drop mass is lower than ice crystal, the result is a new ice

crystal, otherwise graupel or ice pellet are formed, as function of the air temper-

ature;

❼ drop-snowflake: if the drop mass is lower than snowflake, the result is a new

snowflake, otherwise graupel or hail are formed, as function of the air temperature;

❼ drop-graupel: graupel or hail are formed as function of the air temperature;

❼ drop-hail: the result is hail;

❼ ice crystal-ice crystal: the result is a snowflake;

❼ ice crystal-snowflake: the result is a snowflake;

❼ snowflake-snowflake: the result is a snowflake;

❼ graupel-ice crystal or graupel-snowflake: the result is graupel or ice crystal or

snowflake.
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The collection of ice crystals by other ice crystals is called aggregation, while the col-

lection of supercooled drops by ice crystals is called riming.

Aggregation depends strongly on temperature. The probability of collection of colliding

ice particles becomes much greater when the temperature increases to above -5➦C, at

which the surfaces of ice crystals become sticky. Another factor affecting aggregation

is crystal type: for instance, dendrite shapes increase the collection probability. About

the riming, its efficiency collection is greater than the drop-drop collision because the

higher fall speed difference between drops and ice crystals. When a supercooled drop

impacts an ice crystal, latent heat is released during the icing of drop. If the latent heat

is completely dissipated, and the whole drop mass freezes, the new ice crystal is called

rime with a low density (. 0.15 g/cm3) and the accretion process is called dry growth;

while if not all the latent heat is dissipated the accretion process is called wet growth

a liquid film can remain entrapped in the ice core (”spongy”) or can surround the ice

core and eliminated aero dynamically during the fall (”shedding”). In both cases the

new particle has higher density (∼ 0.9 g/cm3). The riming process can also lead to

the formation of hail, that has higher density than graupel (generally hail has density

higher than 0.9 g/cm3, while graupel density ranges between 0.15 and 0.8 g/cm3) and

also larger dimension (the maximum size measured is an hailstone of 20 cm of diameter,

while the graupel has diameter generally below 5 mm).

1.1.3 The rain drop formation mechanisms

After the growth of a population of precipitating cloud particles, there are two different

accepted mechanisms for raindrop formation: in the first one the rain originates from

the melting of ice particle while in the second one, known as ”warm rain”, the rain orig-

inates from collision and coalescence of cloud drops first, and then between rain drops.
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As mentioned above, the growth of precipitation by capture and collision of cloud drops

plays an important role in the precipitation development, but here we are interested

to the possible interactions between the drops: the collision of rain drops (Magarvey

and Geldart 1962, McTaggart-Cowan and List 1975a), together with the evaporation

process, are the main physical mechanism that influence the DSD shape. Collision of

rain drops can lead to two different results: the colliding drops can merge in one larger

drop, this process is known as coalescence, or the two colliding drops can break in a

higher number of different size drops, this process is known as collisional break-up.

The evaporation process affects the precipitation structure, and it is effective when the

drops fall in sub saturated air; this situation usually characterizes the initial stage of

rainfall. Generally, small size drops are more affected by evaporation process, due to

the inverse dependence of the vapour saturation pressure on the curvature radius of the

water/vapour interface (i.e. the drop surface). Therefore, the lower end of DSD can be

modified showing a depletion of small drops.

The coalescence has been extensively studied both from a theoretical point of view

(Twomey, 1965; Svrivastava, 1971) and from an experimental point of view (Mont-

gomery, 1971; Low and List, 1982a,b). The results highlight that the effect of coa-

lescence is the production of a DSD that is roughly exponential both at small and

large diameter while it presents a slightly bump at intermediate diameters (Svrivas-

tava, 1971), due to the increase of their number as consequence of coalescence of small

drops. The figure 1.3 shows the modification of an initial Marshall and Palmer DSD

considering the coalescence process only and the effect of both the coalescence and the

break-up process. In particular, from the coalescence process it is evident the depletion

of small size drops with relative increase of medium drops diameter.

Generally, the effects of break-up process on the DSD are an increase of very small
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Figure 1.3: Effect of coalescence and break-up on an initial Marshall and Palmer DSD (Svri-
vastava, 1971)

size drops and relative decrease of large drops, as shown by figure 1.3 (solid line).The

break-up process can be of two types: the spontaneous break-up, or aero dynamical

break-up, when the drop reaches a size such that the internal forces are not able to hold

up the drop that breaks under aero dynamical forces, in a lightly turbulent flux; and

the collisional break-up, introduced above, when two colliding drops break because the

energy of the collision is too high to create a new drop and is not absorbed by viscous

deformations and oscillations (Porcú et al., 2013).

The aero dynamic break-up is the result of hydrodynamic instability of large single

drop. Different experiments, some studying the falling drop through a column of air at
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rest (Blanchard and Spencer, 1970; Alusa and Blanchard, 1971) and some with drops

suspended in wind tunnels (Beard and Pruppacher, 1969), have demonstrated that a

single drop can reach 9 mm diameter before breaking-up in air at rest. A large drop like

this, has internal oscillations and then develops a depression to its base that leads the

drop to assume an unstable bag shape and then to break into several smaller fragments.

Considering the aero dynamic break-up as a simple balance of the forces effecting on

the falling drop in air at rest, the maximum reachable diameter can be estimated as

(Pruppacher and Klett, 1969):

Dmax =
4π2xσ

3CDρAv2∞
(1.1)

where x is the drop axis ratio, σ is the surface tension of water, CD is the Drag co-

efficient, ρA is the air density and v∞ is the drop terminal velocity. Since ρA and v∞

are function of air pressure, the 1.1 can be calculated at different altitudes. The Dmax

value depends on which model is chosen to estimate the x value, but the most chal-

lenging problem is that a theoretical relationship between the Drag coefficient CD and

the Reynolds Number (Re) does not exist for such large drops. Using the experimental

CD-Re relationship proposed by Loth (2008), the maximum reachable diameter, at sea

level, obtained by 1.1 is 10.7 mm.

There are different opinions about the efficiency in DSD modification of aero dynamical

break-up rather than collisional one. Villermaux and Bossa (2009) assert that is the

aero dynamical break-up that plays the most important role in DSD shape formation.

They studied the aero dynamic break-up in a counter-ascending air current generated

by a big jet. Figure 1.4 shows a 6 mm diameter drop that in the first stage assumes

the bag shape and then breaks into smaller stable fragments. They studied also the

probability to have fragments as function of the fragments diameter, for drops of 6
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and 12 mm diameter, highlighting an inverse exponential trend from smaller to larger

diameter.

There are different points that do not support the dominant role of aero dynamic break-

Figure 1.4: Deformation and break of a 6 mm drop diameter due to the aero dynamical
break-up. (Villermaux and Bossa, 2009).

up with respect to collisional one. First of all, such large drops are rarely observed in

natural rain, where the largest measured drop is about 8.5 mm. The probability, in a

natural rain, to not have collisions for such large drops is very low. In fact, it is demon-

strated that the mean free path for a drop-drop collision is comparable to the average

distance covered by drops larger than 6 mm before to spontaneously break (Prat and

Barros, 2009). Prat and Barros (2009) calculated also the collision rate as function of

rainfall rate finding an increase of collisions increasing the rainfall rate. They found

that for rainfall rate (RR) interval between 10 and 20 mmh−1 the collision rate ranges

from 1 to 100 collision per cubic meter per second. Furthermore, while the aero dynam-
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ical break-up takes place only when drops reach very large dimension, the collisional

break-up takes place over a wide size range.

The products of collisional break-up process have been intensively studied because of

their importance in DSD modification. The first results were obtained by Mc Taggart-

Cowan and List (1975b) setting up an aero dynamic drop accelerator to study collisions

between five pairs of drops at terminal speed. With a similar setup, Low and List (1982a,

1982b) and List et al. (2009) increased the spectrum of drop sizes in colliding pairs in

order to cover a wider range of events. They found that break-up fragments usually

have a bimodal distribution with one big peak at very small size and another one, less

marked, at dimension just smaller than the largest colliding drop. Since this aspect will

be a significant matter of this Thesis, it will be described with more details in the next

section.

1.2 The collisional break-up

Coalescence and break-up are the main mechanisms in the rain formation as conse-

quence of drops collision. The effects of coalescence on the DSD are easy to recognize

and re just mentioned in the previous section.

The chance to have collisional break-up (hereafter referred as ”break-up”) is directly

related to the CKE of the two colliding drops as defined by Low and List (1982a):

CKE =
πρ

12

D3
S ·D3

L

D3
S +D3

L

(vL − vS)
2 (1.2)

where ρ is the density of water, D is the drops diameter and v is the drops terminal

velocity, while the subscripts L and S indicate large and small colliding drop, respec-
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tively. All the quantities in 1.2 are expressed in the International System of Units

(SI1) to obtain the CKE in Joule. The CKE is a balance between the dimension of

colliding drops and their relative fall speed. Figure 1.5 shows the CKE as function of

diameter of two colliding drops: both two small and two large colliding drops produce

low CKE values because of their similar terminal velocity, while the collision of two

drops of different size produces high CKE values.

Low and List (1982a) analyzed the effects of drops collision by studying the process

Figure 1.5: CKE values, expressed in Joule, as function of diameter of two colliding drops.

in laboratory. For the experiment, they used an improvement of the aero dynamical

drop accelerator used by McTaggart-Cowan and List (1975a). The original system de-

1In this Thesis the SI is used. However, some quantities are reported according to the unity of
measurement generally used in meteorology.
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veloped by McTaggart-Cowan and List (1975a) was made up of two parts, one for the

production of small drops (with diameter between 1.0 and 2.5 mm) and the other one

for the production of large drops (with diameter between 3.0 and 5.0 mm). Each part

was composed by a dropper pump, a free fall zone, an accelerator (with a number of

propulsion unit higher for large drops production) and a camera in the collision region.

The system was equipped with an electrostatic device to control the rate production of

drops, especially for the smaller ones. Low and List (1982a) improved on the original

system in order to reveal drops smaller than 1 mm diameter and with a better photo-

graphic equipment. They did collide ten drop pairs with different diameters ranging

from 0.04 to 4.4 mm diameter basing their choice on the probability to have collision

in natural rain for the selected sizes. They calculated the efficiency of coalescence as

follows:

Ecoal = a

(

1 +
DS

DL

)

−2

exp−
σbE2

T

SC

(1.3)

where σ is the surface tension of water, a and b are two constants, ET is the total energy

of coalescence and SC is the surface energy of the spherical equivalent drop. The 1.3 is

valid for ET < 5µJ since they found that no coalescence is observed for ET > 5µJ , and

this is considered the threshold that marks the transition from coalescence to break-up

for two colliding drops.

The products of break-up are fragments of different shape and size. Low and List

(1982b) studied, in the same experiment, the distribution of fragments from collisional

break-up. They found three different fragments shape: filament, sheet and disk in

accordance with what found McTaggart-Cowan and List (1975b). Considering the

overall break-up results, the fragments have a bi-modal distribution. The first and

more marked peak is at very small diameter (generally around 0.5 mm), while the

second is at dimension slightly smaller than the largest colliding drop. This reflects
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what previously said, that is the effect of break-up on the DSD is an increase of small

drops. Considering separately each fragment shape, they found that the distribution of

the sheet and disk fragments is a Gaussian distribution for large drop fragments, while

is a log-normal distribution for small drop fragments. Instead, for all filament break-

ups they found that both distributions for small and large drop fragments are Gaussian

function, while the remaining part of fragments follows a log-normal distribution. The

distribution of fragments as parameterize by Low and List (1982a) has been used by

different authors which studied the collisional processes (McFarquhar, 2004; Prat and

Barros, 2007). The figure 1.6 reports the fragments distributions for five colliding

Figure 1.6: Fragments distribution for overall collision for five different colliding drops couples.
(Low and List, 1982a)
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drops pairs by Low and List (1982b) laboratory studies. It shows the two peaks at low

and large diameters.

A further parameter that affects the outcome of a collision is the eccentricity, ǫ, defined

as the ratio between the distance of the two colliding drop centers δ and the arithmetic

mean of the diameters of volume equivalent spheres D. It plays a crucial role for the

appearance of a specific break-up mode (disk, sheet, and filament) and for the number

of fragment drops created. The mathematical expression for eccentricity ǫ is:

ǫ =
2δ

DL +DS

(1.4)

Schlottke et al. (2010) simulated the Low and List (1982a,b) experiment implementing

a numerical collisional model and increasing the number of drop pairs and taking into

account also the eccentricity. They found that the highest values of CKE result in a

relatively large number of fragments.

They show that drop pairs with CKE > 5µJ always present the break-up products

( 1.7), regardless the value of ǫ, while for CKE close to 5µJ the break-up can occur

for high eccentricity value ( 1.8). Compared to the parameterizations derived by Low

and List (1982b), the fragment distributions obtained in this study exhibit similarities

but also discrepancies, especially with respect to the peak at small size. Namely, for

some colliding couple the peak of small fragments is found at size slightly larger than

0.5 mm and closer to 1.0 mm.

The figure 1.8 reports the snapshots of collisions between 4.6 and 1.8 mm diameter

drops for different ǫ values. The CKE value corresponding to the collision is equal

to 12.53 µJ , therefore over the 5 µJ threshold, and break-up occurs also for ǫ = 1,

although the results of collision are only fragments of very small size. On the other

hand, figure 1.8 refers to two colliding drops of 2.7 and 1.5 mm diameter with CKE
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Figure 1.7: Snapshots of drop collisions for various eccentricities and at different times for
colliding drops of 4.6 and 1.8 mm diameter respectively. (Schlottke et al., 2010)

value of 3.93 µJ . In this case, although the CKE is slightly below the 5µJ threshold,

the break-up takes place for moderate/high eccentricity values.

1.3 The equilibrium drop size distribution (ED)

The parameterization of collision-coalescence and collision-break-up process has been

used to study the modification on an exponential DSD. List et al. (1987) used the

Low and List (1982b) parameterization to analytically examine the evolution of rain-

drop distribution in 1-dimensional box model. They started from a Marshall-Palmer

distribution and performed a numerical integration at different rainfall rate. The result
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Figure 1.8: Snapshots of drop collisions for various eccentricities and at different times for
colliding drops of 2.7 and 1.5 mm diameter respectively. (Schlottke et al., 2010)

was a trimodal ED with the more marked peak at about 0.26 mm while the other two

peaks at 0.8 and 1.8 mm diameter respectively. Furthermore, they found that the ED

is reached for heavy rainfall intensity.

More recently McFarquhar (2004), based on Low and List (1982a), introduced a new

parameterization to derive the ED. The new model takes into account that the distri-

butions of collisional break-up products are combinations of lognormal, Gaussian, and

modified delta distributions, and ensures the conservation of number of small drops

associated to filament and large drops associated to sheet and disk, and the total mass
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conservation. This results in a bimodal ED, with the first peak at 0.26 mm (as in List

et al., 1987) and the second peak at 2.3 mm diameter. Although the resulting ED is

really different with respect to that obtained by List et al. (1987) (bimodal instead

than trimodal), the difference for rainfall rate (RR) and some other DSD integral pa-

rameters, is very low. The DSD integral parameters used in this Thesis will be defined

later within the text (Chapters 4 and 5).

Prat and Barros (2007) investigated the general governing equation for the evolution

of the DSD in the presence of coalescence and break-up. In particular, they focused

on the impact of varying the shape of the initial DSD on the equilibrium solution of

the equation for a wide range of rain rates and break-up kernels. They used different

break-up paremeterization (Low and List parameterization (LL82 from Low and List,

1982b); McFarquhar parameterization (MF04 from McFarquhar, 2004), aero dynami-

cal break-up parameterization (SR71 from Svrivastava, 1971), exponential distribution

of break-up fragments (FTL88 from Feingold et al., 1988), etc.) and found results in

agreement with previous studies. A bimodal ED using McFarquhar kernel, a trimodal

ED using Low and List kernel but with the third peak at just a bit larger diameter.

Furthermore, their results show that, although there is no dependence of the ED on

initial conditions for the same rain rate and break-up kernel, there is large variation in

the time that it takes to reach the equilibrium state.

The figure 1.9 reports the EDs obtained by Prat and Barros (2007) using an initial

Marshall-Palmer DSD and different break-up kernels. While Low and List (1982a,b)

and McFarquhar (2004) break-up parameterization lead to similar ED around the peak

at 0.18 mm and 2.6 mm, but with the strong difference about the presence of third

peak, both SR71 and FTL88 parameterization lead to different ED shape. FTL88 gives

a resulting ED with only one peak around 1.0 mm diameter and a general trend very

different from the others; the aero dynamical kernel (SR71) identifies the peak at 2.6
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Figure 1.9: EDs for different break-up kernels for initial Marshall-Palmer DSD. SR71 is aero
dynamical break-up kernel, FTL88 is collisional breakup using an exponential fragment distri-
bution function, LL82 is collisional break-up using Low and List (1982a,b) parameterization,
MQ04 is the McFarquhar (2004) parameterization. (Prat and Barros, 2007).

mm but shows a lower end ED shape different from the others, especially in the num-

ber of drops 2. Straub et al. (2010) derived new parameterizations of the coalescence

efficiency and the fragment size distribution and investigated how the new break-up

parameterizations influence the shape of a size distribution until the ED is reached.

Comparing their results with Low and List (1982a) and McFarquhar (2004) results,

they found some differences. First of all, accordingly with the most recent analysis

(McFarquhar, 2004; Prat and Barros, 2007), they found a bimodal ED but while the

peak at small diameters is slightly shift toward about 0.35 mm, the second peak is

found at smaller diameter with respect to McFarquhar found, 1.6 mm instead than 2.3

2The unit of measurement used by Prat and Barros (2007) for N(D) is not the usual m−3mm−1

but cm−4 that presents four order of magnitude of difference in number of drops
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mm.

Evidence of break-up influence on experimental DSD shape, up to reach the ED, was

also observed by Zawadzki and De Agostinho Antonio (1988) and Willis and Tattelman

(1989), showing bimodal or trimodal trend in heavy rainfall DSD, at rain rates higher

than 100 and 200 mmh−1 respectively. In particular, Zawadzki and De Agostinho An-

tonio (1988) recorded their data in Brazil and found very good agreement with the

theoretical solutions of stochastic equation. In most of the cases, they observe a tri-

modal ED with the three maxima between 0.6-0.7, 1.0-1.2 and 1.8-2.1 mm diameter as

shown in figure 1.10.

Figure 1.10: DSDs measured by Zawadzki and De Agostinho Antonio (1988) at different
rainfall rate values compared with numerical solution for the stochastic equation. (Zawadzki
and De Agostinho Antonio, 1988)

More recently, Porcú et al. (2013, 2014) measured DSDs at different altitude and ob-

served the effects of the break-up on the DSD resulting in a bimodal shape. They found
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that peak diameters were different than those reported by McFarquhar (2004) and had

altitude dependency. They also analyzed the CKE trend with altitude showing that

although the diameters interested in break-up process are different each other due to

the difference in altitude, the CKE produced is the same.

1.4 The DSD parameterization

In this section will be presented the mathematical functions that are generally used to

parameterize the DSD.

The parameterization of DSD finds applications in various field of atmospheric science:

in the estimation of rainfall rate from radar measurement, in numerical models both

(cloud microphysical models or mesoscale models for weather forecasting application),

etc.

The first that tried to measure the DSD in natural rain was Wiesner (1895), exposing to

the precipitation a filter-paper dusted with a water soluble dye. The measurement was

done in a systematic and methodical manner by Marshall and Palmer (1948) always

recording the raindrops on a dyed filter paper. They approximated the DSD with an

exponential distribution of this form:

N(D) = N0e
−ΛD (1.5)

where D (mm) is the equivolume spherical diameter, N(D) is the number of drops in

the diameter interval between D and D+ δD, N0 is the intercept parameter, that is the

number of drops when D=0 and generally has a constant value N0 = 8 · 103m−3mm−1

and Λ(mm−1) is related to the rainfall intensity (RR) by the empirical relationship:
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Λ = 4.1RR−0.21(mm−1) (1.6)

The equation (1.5) describes an inverse exponential distribution with the peak in

number of drops at D=0. There are many other experimental results that show that

equation 1.5 is a good approximation for DSD.

The improvement in disdrometers technology allowed to collect more data that showed

a number of small drops, generally at diameters smaller than 1 mm, lower than that

predicted by Marshall and Palmer distribution. Waldvogel (1974) has shown that large

and sudden changes in N0 can occur as a function of precipitation type. In these

situations is necessary to take into account the variation of N0 that is assumed constant

in equation 1.5. Ulbrich (1983) introduced a new parameterization for the DSD using

a gamma distribution expressed as:

N(D) = N0D
µe−ΛD (1.7)

where µ is the shape parameter and can assume both positive and negative values

determining the downward or upward concavity respectively, and Λ is the slope of

distribution and can assume only positive values. Higher values of Λ indicate narrow

distribution in the absence of large drops while the wide distribution results in lower Λ

values.

The figure (1.11) shows four different gamma distribution as function of µ and Λ

values for a given N0. Positive µ values give a downward concavity and negative values

upward concavity, while high Λ values give more flat distributions and low Λ values

steeper distributions. The three parameters of gamma distribution (N0, µ and Λ) are

generally derived using the method of moments. The nth-moment of the DSD, for a
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Figure 1.11: Examples of gamma distribution for different µ and Λ values.

gamma DSD model, has the form:

Mn =

∫

∞

0

DnN(D)dD = N0Λ
−(µ+n+1)Γ(µ+ n+ 1) (1.8)

where Γ(x) =
∫

∞

0
e−ttx−1dt represents the complete gamma function of a generic vari-

able x.

Almost all the integral DSD parameters (i.e. radar reflectivity, rainfall rate, etc.) can

be approximated by a moment of gamma distribution expressed as (1.8). The three

parameters of gamma distribution are generally determined by a combination of three

moments, i.e. moments 2-3-4 (M234) or moments 3-4-6 (M346) and so on, and assume

different expressions. Depending on the integral parameter studied, different methods

of moments are used to parameterize the DSD and the closest moments to the interested

parameter give the smallest bias and fractional error. Cao and Zhang (2009) showed

that middle-moment estimators of gamma DSD parameters produce fewer errors than
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the lower- and higher-moment estimators. If the DSD follows the gamma distribution,

as for the most part of the cases, M234 has the best overall performance in estimating

the considered variables. However, if there is an appreciable error between the DSD and

the gamma distribution, i.e. as for the equilibrium DSD, the performance of M234 will

degrade. In this case, the selection of a moment estimator depends on the considered

integral parameters.

In general, the three parameters N0, µ and Λ can be derived from any three moments,

such as the second, third and fourth. Using a ratio defined as:

η =
M2M4

M2
3

(1.9)

µ and Λ can be easily derived:

µ =
4− 3η

η − 1
Λ =

M2

M3(η − 1)
(1.10)

while N0 can be obtained by substituting the expressions of µ and Λ in the (1.8).

It should be noted that the integration in (1.8) is performed from 0 to infinity, that

is, an untruncated size distribution and this means that drops can assume an infinite

size range. This statement is incorrect because in natural rain only a finite number of

raindrops were observed within a finite size range (Dmin, Dmax) because of practical and

sampling limitation in measuring small and large drops. Furthermore, from a physical

point of view, the drops can reach a limited dimension during their fall due to both

collisional and aero dynamical break-up. If the assumption Dmin = 0 produce a very

negligible error, the same can not be said if the assumption Dmax = ∞ is taken into
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account. Considering Dmin and Dmax as limits of integration, the (1.8) becomes:

Mn =

∫ Dmax

Dmin

DnN(D)dD =

= N0Λ
−(µ+n+1)[γ(µ+ n+ 1,ΛDmax)− γ(µ+ n+ 1,ΛDmin)] (1.11)

where γ(x, y) =
1

Γ(x)

∫ y

0
e−ttx−1dt represents the incomplete gamma function of generic

variables x, y.

The use of truncated moments calculated according to the (1.11), to fit a DSD may

cause a larger error than the use of untruncated moments in estimating the DSD pa-

rameters µ, Λ and N0. The narrower the distribution (that is, Dmin increases or Dmax

decreases, corresponding to small values for µ and Λ), the larger the error (Vivekanan-

dan et al., 2004). Being the (1.11) a non-linear equation, it can be solved applying an

iterative method which solutions are the unknowns µ and Λ. The effect of truncation

is strongly dependent by the choice of Dmin and Dmax.

1.5 DSD and radar parameters

The knowledge of the DSD is essential for many applications in various disciplines of

earth sciences. While rain gauges directly measure rain intensity and accumulation

at a point, regional to continental mapping of rainfall relies heavily on measurements

that include ground-based radar and satellite remote sensing. These remote sensing

measurements necessarily employ empirical relations and underlying assumptions that

are directly related to and affected by characteristics of the DSD. The accuracy of the

rainfall estimates using single polarization radar measurements traditionally relies on
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the appropriateness of derived radar rainfall relations including radar reflectivity to rain

rate, Z-R, relationship3. The reflectivity Z and the rain rate RR are defined, as follows:

Z =

∫ Dmax

Dmin

D6N(D)dD (1.12)

RR =
π

6
3.6 · 106

∫ Dmax

Dmin

v(D)D3N(D)dD (1.13)

where v(D) is the terminal fall speed of drops, D is the drop diameter and N(D) is the

DSD. In the 1.13 the constant value 3.6 ·106 is necessary to express the RR in mmh−1,

its typical unit in meteorology. The Z-R relationship has the following form:

Z = ARb (1.14)

where the parameters A and b depend on the characteristics of the site (geographical

location, local climatology, altitude, etc..) and the event (season, time of the day, type

of precipitation, etc.). Due to the large diffusion rain gauges, it is common practice

to evaluate radar-rainfall estimates with respect to rain gauge measurements, which

are considered a good ground reference. However, rain gauges provide point values

when compared to radar data, which are areal estimates. These sampling uncertain-

ties, henceforth referred to as spatial sampling error, have been the object of numerous

studies and need of gauge network to be limited. Since the rainfall is a derived product

and the reflectivity is a direct radar measurement, disdrometers provide the most rel-

evant data source to study spatial variability of rainfall and reflectivity. On the other

side, a disdrometer network is more expansive and need a major maintenance with

respect to a gauge network. Futhermore, radar measurements and rainfall are integral

3The rain rate is indicated as RR within this Thesis. However, in the radar reflectivity to rain rate
relationship it is indicated with R and, just in this case RR is substituted by R
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products of the DSD and a disdrometer is often employed to derive Z-R relations for

a climate region, a particular weather system, or even a season. The highly variable

nature of the DSD, for example from one weather system to another or between convec-

tive and stratiform parts of the same storm, results in substantial differences in derived

ZR relations. Battan (1973) summarized 69 different Z-R relationships, calculated by

different authors and derived for different climatic settings in various parts of the world.

The A coefficient assumes a very wide range of values, with a difference of one magni-

tude order too, while the b coefficient moves from values close to 1 to values close to 2.

With the development of dual-polarized radars the use of Z-R relationship lost impor-

tance because of the availability of more radar parameters. For the dual-polarization

radars, disdrometer observations are often employed in deriving relationships between

polarimetric radar observables such as reflectivity at horizontal polarization (Zh), differ-

ential reflectivity (Zdr), and specific differential phase (Kdp) and rain rate (i.e. Gorgucci

et al., 1995, Tokay et al. 2002 and many others). The mathematical expression for the

horizontal/vertical reflectivity is:

ZH,V =

∫ Dmax

Dmin

σH,V (D)N(D)dD (1.15)

where σH,V is the backscattering cross section at horizontal and vertical polarization

respectively. The differential reflectivity Zdr is defined as the ratio between horizontal

and vertical reflectivity, namely:

Zdr = 10log
ZH

ZV

(1.16)

Usually both ZH,V and Zdr are expressed in dBZ, while Kdp, that is the difference

between the horizontal and vertical phase shift, is expressed in km−1 and its formulation
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is:

Kdp =
180

λ
103

∫ Dmax

Dmin

ℜ [fhh(D)− fvv(D)]N(D)dD (1.17)

where λ is the wavelength of radar, fhh,vv is the forward complex scattering amplitudes

at horizontal polarization and vertical polarization, respectively, and ℜ indicates the

real part operator. Following the 1.14 the relationship between polarimetric radar

variables and rainfall rate4 have the form:

R = AKb
dp (1.18)

R = AZb
hZ

c
dr (1.19)

R = AKb
dpZ

c
dr (1.20)

1.6 DSD Variability

The highly variable nature of rainfall is well known: it is not uncommon that one expe-

riences rainfall while another one not, or that one experiences heavier rainfall than the

other. The lifting mechanism that origin the cloud and the environmental conditions,

as well many other factors, play a crucial role in determining type and intensity of

the precipitation. The lifting based on solar heating or forced by orography results in

shorter-lived precipitation if compared to that originated by frontal lifting mechanism.

This reflects in an higher variability of precipitation structure in the former case with

respect to the latter. Moreover, embedded convection is not uncommon within strati-

form rainfall, especially at mid-latitude over complex orography.

Space-borne and ground-based remote sensors provide data to estimate rainfall rate.

These estimates allow to evaluate the variability of precipitation intensity at large scale,

4Also for the relationship between rain rate and polarimetric radar variables RR is substituted by
R
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but ar not able to resolve the structure below the footprint size, which is, in many cases,

comparable to the variability scale of precipitation field. The rain gauge and disdrom-

eter point-like measurements may provide a direct measurement but they suffer from

poor spatial coverage. Dense networks of these instruments are able to shed a light on

the horizontal spatial variability of rainfall, even if they provide point values that can

be compared with difficulty to remotely sensed areal estimates. This sampling discrep-

ancy needs to be characterized and accounted for to achieve meaningful comparisons

between these two measurement. The most part of studies in the literature focus more

on the assessment of the impact of the spatial sampling error in radar and disdrometers

comparisons than on the formulation of a methodology able to account for it (Zawadzki,

1973; Rodŕıguez-Iturbe and Mej́ıa, 1974; Morrissey et al., 1995). The description of the

statistical properties of spatial sampling uncertainties is a key element in formulating

such a methodology. Villarini and Krajewski (2008), for instance, attempted to de-

scribe the distribution of the spatial sampling errors in space and time. They found

that the standard deviation of the spatial sampling uncertainties tends to decrease with

increasing rainfall intensities and accumulation time, while it results larger increasing

pixel size.

The natural variability of precipitation needs to be studied in order to better evaluate

the spatial sampling error and to have a complete analysis of precipitation pattern.

Usually the integral parameters of DSD are analyzed in terms of spatial variability.

The easiest parameter to study is the rainfall rate, also because it needs a rain gauge

to be measured. If disdrometers network is available, the variability of many other

paramaters (i.e. reflectivity, liquid water content, mean mass diameter, etc.) can be

directly investigated. Extreme spatial variability of rainfall is a source of fundamental

difficulties in the evaluation of radar rainfall estimates. Furthermore, spatial variabil-

ity, especially at small scale, have important implications in hydrological applications
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because they require analyses across different spatial scales. It has also implication if

partial beam filling is present, that is, when the radar cell or satellite footprint is not

completely covered by rain. In this contest, it is fundamental to understand how much

the precipitation is correlated within a radar pixel or satellite footprint. A good way to

do this is to use a three-parameter exponential function (Habib and Krajewski, 2002):

R(d) = R0e



−

d

d0





S0

(1.21)

where d0 and s0 are the unknowns of the function and represent the correlation distance

and the shape parameter, respectively. A more complete description of all function pa-

rameters will be given in the dedicated section 5.1.

Habib and Krajewski (2002) used this function to estimate the spatial variability of

rainfall analyzing ground radar measurement by using a rain gauge network. Within

the size of the radar pixel of 2 km, the rainfall field observed by the rain gauges decorre-

lates to about 0.6 for a 5-min accumulation time, while higher values of 0.7 and 0.8 are

found for 15-min and 60-min accumulations time, respectively. Ciach and Krajewski

(2006) analyzed a 3 x 3 km area covered by 25 gauges and used the model represented

by equation 1.21 for different averaging time-scale and found that both d0 and s0 pa-

rameter increase increasing the averaging time-scale (the complete description of the

function and its parameters will be given to the Chapter 5); simultaneously the root

mean square error (RMSE) of fit between real data and model data decrase increas-

ing the averaging time-scale. If the analysis is made for some particular events that

present different rain intensity, the three-parameter exponential function results in dif-

ferent behavior, with high correlation distance and shape parameter and low correlation

distance and shape parameter for convective and stratiform precipitation respectively.
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Tokay and Öztürk (2012) analyzed a dataset with 6 rain gauges spaced from 0.4 to 5

km and found correlation distances, as function of time integration, really higher than

what Ciach and Krajewski (2006) found. They found also results in agreement with

Ciach and Krajewski (2006) with very different correlation trend if uniform, moderately

and highly variable precipitation cases are considered. Tokay et al. (2014a) analyzed

spatial variability of rainfall over a 11 rain gauges network with separation distance

from 1 to 150 km. They found correlation distance values higher for fall-winter season

with respect to spring-summer and an increase increasing the integration time.

Although all these works are based on rain gauges network, a disdrometer network

is the best way to investigate the DSD variability, even if the maintenance of a such

structure,from different points of view, is complicated. This is the main reason that the

literature is lacking of work regarding the study of DSD variability from disdrometer

observations. Miriovsky et al. (2004) limited their study to the spatial variability of

radar reflectivity using four different disdrometer types. In particular, they compared

the joint density functions of 1- and 15-min reflectivity and rainfall rate data. They

found that the 1-min reflectivity data indicate higher spatial variability than 15-min

data; the coefficient of variation (CV, defined as the ratio between the standard devia-

tion and the mean value of a variable) indicates that the reflectivity is more variable of

rainfall rate. However, their work was strongly limited by using different disdrometer

types resulting in difficulty to distinguish between the natural variability of the DSD

and instrumental effects so that they were unable to make any quantitative statements

about small-scale spatial variability of reflectivity because of the overwhelming instru-

mental effects.

Later, Lee et al. (2009) used four POSS (Precipitation Occurrence Sensor Systems),

a disdrometer very similar to Pludix, to study the DSD spatial variability. The dis-

tance between each disdrometer couple ranged from 1.3 to 31 km. They analyzed the
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moments of DSD and as well as the rainfall rate and the radar reflectivity. Analyzing

the mean DSDs, the authors found significant difference highlighting significant spatial

variability of DSD and its parameters. They showed also that the lower moments of

DSD have correlation greater than high moments and this underlines that the big drops

play an important role in DSD variability. They found also an appreciable variation of

number density N0. However the campaign had not be sketched for the DSD spatial

variability study and this limited the analysis.

Also Tokay and Bashor (2010) used a disdrometric dataset, composed by three JW

disdrometers operating at a distance of 0.65, 1.05, and 1.70 km in a nearly straight line,

to examine the variability of DSDs and its integral parameters of liquid water content,

rainfall, and reflectivity. The studied the DSD spatial variability for different integra-

tion times analyzing both the trend of the standard deviation of the difference (SD)

and Pearson product-moment correlation coefficient between the pairs of disdrometer

measurements. Generally, SD decreases increasing the integration time while increase

with the distance. Similarly, the correlation coefficient decreases with the distance and

increases for longer integration period. Considering the 6-min the integration time as

reference, the parameter that has the greatest variation with the distance is the mean

mass diameter, while the reflectivity has the lowest variation among the integral param-

eters. The study focused on the partial filling of a radar pixel and showed that in 10%

of the cases a single disdrometer reported more rainy minutes than the rainy minutes

when all three disdrometers report rainfall. Similarly two out of three disdrometers

reported 5%more rainyminutes thanwhen all three were reporting rainfall considering

1-min data.

More recently Jaffrain et al. (2011) set up a very dense disdrometer network, collo-

cating 16 Parsivel (old version) in 1 km2. The spatial variability is quantified by the

coefficient of variation of the total concentration of drops, the mass-weighted diameter,
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and the rain rate between the 16 stations of the network. They found a trend of CV

for total concentration of drops and rain rate with the high values of CV for the low

values of both Dm and RR, while low values of CV result for NT > 400 m-3 and RR>

15 mmh-1, respectively. The CV of mass-weighted diameter does not show any trend

and ranges between 3% and 60%.

In this Thesis the DSD spatial variability is studied using data from disdrometer net-

works of two field campaigns. This allows to analyze the rainfall rate and other DSD

parameters (i.e. maximum drop diameter, radar reflectivity, etc.). The disdrometer

networks used here have specific peculiarities with respect other field campaigns both

for number and spatial arrangement of disdrometers (i.e. the Wallops network has

dimensions comparable to a radar pixel or satellite footprint).



Chapter 2

Instrumentation and field

campaigns

The word disdrometer, as instrument ables to measure sizes and velocities of drops,

was used for the first time by Clardy and Tolbert (1961). The disdrometer is designed

to measure the DSD, while other instruments are able to derive the DSD from their

measurements. The disdrometers can be based on different measurement principles.

This assures a such of variety in measurements, since each disdrometer type brings out

a particular characteristic of the precipitation. It is not too easy to collect disdrometric

data because of the difficulties in maintenance of disdrometers network due to the costs

and logistic problems as well. Not secondary, is the necessity to have high qualified

person to check the correct functioning of the instruments. Much easier is to collect

rainfall rate (and rain amount) measurements, that is an integral parameters of DSD,

but that does not give information about the precipitation properties.

Within this chapter, after an overview, from historical point of view, of the developments

of the disdrometers, the properties of disdrometers which data are used for this Thesis

37
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as well the characteristics of field campaigns will be described.

2.1 Instruments overview

The first attempts to measure raindrop sizes date from 1895, when Wiesner (1895)

published the description of a method consisting of using a sheet of absorbent paper

covered with a water-soluble dye, which was exposed to rainfall for a few seconds. The

drops left permanent marks on paper and the raindrop size was considered as function

of the diameter of the marks only. However other factors have to be taken into account

as the thickness of the paper, the drops terminal velocity and also the humidity of the

paper. About half century later, Marshall and Palmer (1948) used a very similar equip-

ment to measure the size of falling drops. They found an exponential distribution in

agreement with what, five years before, Laws and Parsons (1943) found. The Marshall

and Palmer work is taken as reference for all the people that approach the study of the

DSD.

Another traditional way of measuring raindrop size is the flour method, that was orig-

inally presented by Bentley (1904) and subsequently modified by Laws and Parsons

(1943). Similarly to the paper procedure, a thick flour layer few millimeter deep is ex-

posed to rainfall for a time interval depending on the rain intensity (generally ranging

from 3 to 5 seconds), such that enough raindrops would have been trapped; the formed

capsules are marked and oven dried. The drop diameter for each capsule is then calcu-

lated by converting the weight of the flour capsule into appropriate raindrop diameter

using an suitable relationship between these two quantities. Nowadays, the technology

improvements led to the disuse of these methods, except for few rare exception (Mahadi

et al., 2014).

Jones (1959) developed another method known as the raindrop camera, which consists
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of two cameras placed close together that are synchronized to take two photos simulta-

neously of the raindrop from two perpendicular angles. This method makes it possible

to obtain a three-dimensional reconstruction of the shape of the raindrops, and from

there to calculate their size. However this first version of this instrument type suffered

of technical limits as the low time resolution (it captured the raindrops every 10 sec-

onds). Clardy and Tolbert (1961) were the first to use the word disdrometer and their

instrument consisted by a phototube able to capture the raindrops passing through

the sampling region. The instrument used a sheet of light as the sensing element and

recorded the number of drops, within certain size ranges, as they fall through the light

slit.

All these methods had a poor time and size resolution, due also to the technology

limitations of the mid ’900. An improvement was possible only when the advances in

technology resulted in development the more refined disdrometers, instruments based

on different functioning principles and able to measured the number of drops falling

within a rain event, that allowed a systematic approach to the DSD measurement.

One of the most widely known and used instruments, since it became commercially

available during early 1970s, is the Joss-Waldvogel disdrometer (Joss and Waldvolgel,

1969). It is based on the conversion of the vertical momentum of the impacting rain-

drop into electrical impulses, that is related to the raindrop size because of both drop

mass and velocity depend on the drop size. From its development most of literature

refer to the data collected by one or more Joss-Waldvogel disdrometer.

During the 1980s and 1990s several different disdrometers, based on the interaction

between the electromagnetic waves and the falling raindrops, were developed. They

are know as optical disdrometers and infer the dimension of raindrops passing through

their laser beam measuring the attenuation of the laser beam; although the functioning

principle is the same they do not work at the same wavelength. Many models have
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been developed like, for example, the Vaisala FD12P (FD12P Interface Control Doc-

ument, 2007, available on the web), the Laser Precipitation Monitor (Thies Clima),

which emits a laser beam at 785 nm. Among the laser disdrometers, the Particle Size

Velocity disdrometer (Parsivel), that was originally developed by PM Tech Inc., Ger-

many (Loffler-Mang and Joss, 2000), improving the instrument potentiality measuring

also the terminal velocity of raindrops. Recently, the OTT redesigned Parsivel develop-

ing an upgraded version (Parsivel2), with better measurement accuracy (Tokay et al.,

2014b). Since its commercial availability, the Parsivel2 has become one of the most

diffused disdrometers.

The need to have raindrops samples in a large volume has been resolved by using radar

measurements of the velocity spectra generated by the falling raindrops. Between 1990

and 2000 two very similar instruments, even if developed independently, had been

constructed. Sheppard (1990) developed the Precipitation Occurrence Sensor System

(POSS) while Prodi et al. (2000) developed the Pludix (”PLUviometro DIsdrometro in

band X”). Both the instruments are bistatic low power continuous wave (CW) X-band

radar and are based on the Doppler effect principle. The two main differences are that

while Pludix is a vertical pointing radar, the beam axes of POSS are oriented 20➦from

the vertical and that they work at very close frequency (9.5 GHZ for Pludix and 10.525

GHz for POSS).

In the first 2000s, the Two-Dimensional Video Disdrometer (2DVD) (Kruger and Kra-

jewski, 2002; Schnhuber et al., 2007) has been developed. As for the first raindrop

camera method (Jones, 1959), the 2DVD has two perpendicular camera that capture

the falling drops in its cross-section measuring dimension, fall velocity and shape. The

better knowledge of the problems related to the DSD measurement together with the

increased technology availability leads having measurements that are obviously not

comparable with the first models of this instrument type and make 2DVD one of the
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best available instruments.

Recently, another contribution to measuring raindrops is the Micro Rain Radar (MRR),

an instrument that is halfway between a disdrometer and radar system. It combines

the reflectivity measurement at different heights with the descent velocity of the rain-

drops by the Doppler effect. The MRR is a continuous wave frequency modulated (FM)

radar and this makes possible to perform profile measurements with selectable range

resolution.

2.2 Instruments description

In this section the characteristics of the instruments which data are used for this Thesis

will be described.

2.2.1 Pludix

The Pludix (PLUviometro-DIsdrometro in X-band), manufactured by Nubila sas, is a

bistatic low power continuous wave (CW) X-band radar for monitoring and character-

izing atmospheric precipitation at the ground. Its functions are:

❼ to identify precipitation type (rain, snow, hail, drizzle);

❼ to provide raindrop size distribution;

❼ to measure the instantaneous rainfall rate;

❼ to give the total rainfall in a given time interval.

The Pludix is composed by an external device, in which are housed in all the compo-

nents to generate the electromagnetic waves and the transmitter and receiver antenna,
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and the acquisition data system, that has to be connected to a pc, that contains the

data acquisition boards with the Pludix software. Both the external device and the

acquisition data system are made with weather resistant materials. The figure 2.1

shows the dome shape external device.

Figure 2.1: The external dome-shaped device of Pludix in which are housed the active sensors
of the instrument.

The sensor is an X-band continuous wave, low power (10 mW) Doppler radar (9.5 GHz

frequency of operation). The microwave beam emitted by an upward oriented antenna

is backscattered by the falling hydrometeors.

The transmitting and receiving antennas are very close to each other and the volume

of measurement is immediately above them. The figure 2.2 describes in a schematic

manner the geometry of system and the equi-phases surfaces, that are surfaces charac-

terized by the same transmitting power.

Near the ground each hydrometeor reaches an aerodynamic equilibrium and falls at a

constant terminal velocity only as a function of its size, in the absence of vertical wind.

Since Pludix is a low power radar, its reflecting volume is few meters above the ground
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Figure 2.2: Schematic representation of the transmitting and receiving Pludix antenna with
the equi-phases surfaces

where the instrument is located, and where vertical wind is zero by definition; so when

a hydrometeor enters the measurement volume, it produces a signal whose frequency is

a function of its velocity. The amplitude of such components is a function of the reflec-

tivity of the hydrometeors, and their concentrations and location in the volume seen by

the sensor. About the latter point, a statistical hypoThesis is made that droplets have

an equal probability of falling on a horizontal surface above the instrument. The phys-

ical characteristics of hydrometeors affecting the output signal are the backscattering

cross section σb and the fall velocity v. Both are related to the size, phase (liquid, solid,

mixed) and composition (water, air) of hydrometeors.

The theory regarding the computation of backscattering cross section σb of a spherical

drop by a plane wave, was developed by Mie (1908) which showed that

σb =
πr2
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with α =
2πr

λ
and λ is the wavelength of the instrument and r the radius of spherical

particle. The terms an and bn refer respectively to the scattering arising from induced

magnetic and electric dipoles, quadrupole, etc. while n indicates the expansion degree
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of an and bn. The terms an and bn can be expressed also as function of the complex

refractive index M = n − ik where n is the ordinary refractive index while k is the

absorption coefficient of material (in our case, water or ice if raindrops or ice crystals

are considered). The 2.1 is always valid but if α ≪ 1, that is, the drop radius is

much smaller than the instrument wavelength, the 2.1 can be written as the Rayleigh

scattering formula:
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with K =
m2 − 1

m2 + 2
and Di the particle diameter.

The basic output of Pludix is the Doppler spectrum of the signal which is obtained

from the mixer of the radar as a function of the Doppler frequency shift, collected every

minute and sampled from 0 to 1024 Hz in 1024 bins one Hz wide. Generally, a rainy

precipitation is able to produce, at the frequency work of Pludix, Doppler frequency

shift between 0 and 600 Hz at sea level, a snow event produce frequency shift generally

lower than 200 Hz while hail produce very high frequency shift values (if very large

hailstones are present the frequency shift can exceed the 1000 Hz). As known, drops

fall with a terminal constant velocity that depends on the drop dimensions through the

empirical Gunn and Kinzer (1949) relationship:

v = 9.65− 10.3 · e−0.6D (2.3)
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in which v is the terminal velocity (ms−1) and D the diameter (mm). This formula

is effective under standard atmospheric temperature and pressure and for 0.2 < D <

7.0mm. The figure 2.3 shows the fall velocity, referred at sea level, as function of drop

diameter as described by the 2.3 (Gunn and Kinzer, 1949) and of the corresponding

Doppler shift frequency obtained by 2.4 as well.
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Figure 2.3: Trend of the fall velocity, referred at sea level, as function of drop diameter
following Gunn and Kinzer (1949) and of the Doppler shift frequency.

The falling drops when enter in the measurement volume, which varies with drop size

from a few cubic meters to cubic decimeters for larger and smaller drops, respectively,

produce a Doppler echo whose frequency shift f is proportional to the terminal velocity

v:

f =
2v

λ
(2.4)
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where λ is the radar wavelength (for Pludix λ = 0.0315m). The inversion procedure

is based on the conversion of the power spectrum in DSD via the frequency-terminal

velocity and the terminal velocity-drop diameter relationships (eq. 2.4 and 2.3).

To estimate correctly the instrument response to natural precipitation and determine

the drop size distribution, measurements on monodisperse droplets are performed in

controlled conditions and a calibration procedure is constructed (Prodi et al., 2000a,b).

Drops are considered spherical up to 1 mm of diameter. The scattering diagram is

calculated for a relatively large number of drop size classes using a T-Matrix code (Prodi

et al., 1999). If natural rain, as a superposition of monodisperse rains is considered, its

spectral intensity Sreal is:

Sreal =

∫ Dmax

Dmin

N(D)Smono(D)dD (2.5)

where Smono is the spectral intensity generated by a monodisperse rain of diameter

D, divided by the number of drops which has caused it, and N(D) is the distribution

function, i.e. the relative contribution of that size to the real spectral intensity Sreal.

If the above equation is discretized in frequency and diameter, it gives:

Sfi = C(fi,Dj)NDj
(2.6)

where ND is a column vector whose elements are the number of drops per unit volume

in diameter interval Dj, C is the matrix of the contributions to power of monodisperse

drops of diameters Dj (column index) at frequencies fi (row index), divided by the

average number of monodisperse drops. For the inversion problem solution, if the C

matrix is constructed in such a way that the number of size and frequency intervals

are chosen to be the same, it is possible to deduce the drop size distribution N(D) by
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the real spectrum S by inverting only the square matrix C. In fact, from 2.6 the N(D)

is the unknown quantity to calculate while S is the power spectrum measured by the

instrument. The inversion problem is therefore reduced to inverting the square matrix

C (21x21). The drops are classified in 21 constant size (0.3 mm wide) intervals, between

0.8 and 7.1 mm, and the actual rainfall rate RR (mmh−1) is computed from the DSD

with a time resolution of one minute.
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Figure 2.4: Example of some Pludix power spectrum.

The figure 2.4 shows some Pludix power spectrum, as example. The power and the

Doppler frequencies interested depend on the rain intensity. The figure 2.5 shows the

Pludix power spectrum during a snow event where two main differences result if a com-

parison with Pludix answer during a rain event is made. One is that the backscattered

power during a snow event is lower than a rain event, due to the lower backscattering

cross section of ice with respect to the water for small α values at the working frequency

of Pludix, and one is that the Doppler frequencies generated are lower because of the

lower terminal velocity of snow flakes. The velocity-dimension relationship is gener-
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Figure 2.5: An example of Pludix power spectra during a snow event.

ally replaced by velocity-mass relationship if ice particles are analyzed. Pruppacher e

Klett (1978) report different velocity-mass relationship (see their tables 10.3b-10.5) as

function of crystals (or aggregates) shape. Despite the not easy solution for the deter-

mination of unique relationship to estimate the ice particle fall speed, the maximum

values measured do no exceed the 3 ms-1. A fall speed of 3 ms-1 produces a Doppler

frequency shift of 190 Hz, so that the interval 0-200 Hz can be considered the snow

band. All these considerations are valid considering dry snow. If wet snow is present,

the Doppler frequencies interested increase, due to the higher terminal velocity of par-

ticles, and can reach values also exceeding 300 Hz.

Terminal fall velocity of hail has been determined from different direct observations:

Lozowski and Beattle (1979), made their measurements in Canada and found the re-

lation v = 12.43D0.5, while Knight and Heymesfield (1983) made their measurement
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in Colorado (USA) and found the relation v = 8.445D0.553 where D(cm) is the hail

diameter and v(ms−1) is the fall speed. Other relationships are v = 4.51D0.5 (Cheng

and English 1983) or v = 4.41D0.5 (Ulbrich and Atlas1982) where D is in mm. As

for the snow, the hail terminal velocity is dependent from the ice density and this is

reflected in the different relationships found.

The fall speeds of hail are able to generate Doppler frequencies shift higher than 600

Hz. Typical Pludix power spectra in presence of hail are that show in figure 2.6. If
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Figure 2.6: An example of hail Pludix power spectra.

hailstones are present in a rainy precipitation the Pludix power spectrum presents sec-

ondary maximum at very high frequencies (if the hail size is very large the Doppler shift

can also exceed 1000 Hz). The spectrum shape becomes multi-modal with asymmetric

peaks because of the inhomogeneous distribution of hail size.

Here, the description of Pludix power spectrum characteristics is limited to the more
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frequent precipitative events (rain, snow, hail), but all the other conditions (i.e. mixed

precipitation) can be detected by Pludix generating a variety of Doppler spectra that

can be considered as an overlapping of those above described.

2.2.2 2DVD

The 2DVD - Two Dimensional Video Disdrometer (Kruger and Krajewski, 2002; Schn-

huber et al., 2007) measures size, fall velocity and shape of each hydrometeor that falls

in its sampling volume. The 2DVD measurement principle is based on two high speed

line scan cameras, that are placed orthogonally to each other, creating the approxi-

mately 10×10 cm2 virtual measurement area. The actual version of 2DVD consists of

three main units, the Sensor Unit (SU), the Outdoor Electronics Unit (OEU) and the

Indoor User Terminal (IUT). The first 2DVD version was taller than the actual and

Nespor et al. (2000) indicated that wind induced measurement errors, caused by the

shape of the instruments, were present. Consequently, the shape was modified until

to the actual more compact version. The figure 2.7 shows the SU (truncate pyramid

shape) and the OEU (rectangular shape) of 2DVD, where the former has vertical di-

mension very smaller with respect the first 2DVD version to avoid error measurements

due to the wind effects.

A light source generates a light sheet that is projected onto a line-scan camera that has

a single line of 512 photodetectors that are read out at a rate of 34.1 kHz, creating slices

of the image projection. The light sheets are intense and particles falling through them

cast shadows on the photodetectors. The photodetector signals are compared against

a threshold to determine if a pixel is lit or obscured and in this regard, the 2DVD is

calibrated by dropping calibration spheres ranging from 0.5 to 10mm in diameter. The

combination of bright light and video thresholding renders the raindrops opaque, and
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Figure 2.7: The Sensor Unit and the Outdoor Electronics Unit of the 2DVD. Schonuber
(2007).

makes the 2DVD insensitive to ambient light. The two orthogonal projections provide,

in principle, three-dimensional raindrop shape information. The light sheet width is 10

cm, so that each photodetector corresponds to 0.1953 mm. The photodetector output

is compared to a threshold level and if a pixel value exceeds the threshold, the 2DVD

treats the pixel as obscured. The number of obscured pixels determines the size of an

hydrometeor.

Shape informations allow computation of the drop volume and equivalent drop diam-

eter D, as well as the oblateness and the effective measuring area of drop and these

quantities are necessary to derive the DSD and RR. The 2DVD is also able to calculate

the terminal fall velocity of hydrometeors by measuring the time the particle takes for

proceeding from camera A (upper system) to camera B (lower system). The distance

of the two optical planes is set to around 6.2 mm and then precisely measured by use of

calibration spheres. To minimize quantization effects, the mean of time needed to the

hydrometeor to pass through the two optical planes both incoming and exiting each of
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two planes, is considered. Once that the terminal fall speed is calculated, the particles

are filtered out if the measured fall speed is faster or slower than ±50% of the Gunn

and Kinzer (1949) observations.

Since the 2DVD measures the drops one by one, is possible to classify them into classes

of requested width. Generally, the DSD is calculated over 50 classes 0.2 mm width,

using the following relationship:

N(Di) =
1

Ai · vi · t ·∆di
(2.7)

where N(Di) indicates the number of drops per cubic meter per millimeter of i-th

diameter class, Ai is the effective measuring area of drop, vi is the terminal fall speed

(measured by the instrument or calculated by 2.3) and t is the integration time ( one

minute typically). The contribution of each drop to the RR is calculated as follow, and

then the contributions of all drops falling in the integration time are summed up:

RRi = 3600
Vi

Ai · t
(2.8)

where RRi is the rainfall rate due to the i-th drop, Vi is the drop volume in mm3

and Ai and t are always the effective measuring area of drop and the time integration,

respectively.

The 2DVD provides the most detailed information about the individual hydrometeors,

despite recent comparative studies revealed that the 2DVD often underestimates the

drop concentration for the sizes less than 0.5 mm in diameter (Tokay et al., 2013).

The 2DVD data viewer menu presents the image of the hydrometeors in two measuring

planes as shown in the figure 2.8.

Figure 2.8 represents a screen dump of the data viewer main menu, showing in the
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Figure 2.8: A screen shot of 2DVD. Schonuber (2007).

bottom panel the particle front contour, in the middle panel the particle side contour

and a virtual top view of the measuring area, and in the top panel the five sub-menus

with representations for rain rate, drop size distribution, fall velocity, an estimate for

horizontal velocity of raindrops, and particles height/width ratio.

2.2.3 Particle Size Velocity disdrometer (Parsivel)

The Particle Size Velocity disdrometer - Parsivel is a laser-optical disdrometer manu-

factured formerly by PMTech and recently it has been resigned by OTT (Parisvel2),

and it is intended for hydrometeor size and fall speed measurements. Parsivel2 is an

upgraded version of the Parsivel where measurement accuracy at both small and large
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drop end is noticeably better in new model (Tokay et al., 2014b). The disdrometer

consists of an optical sensor, where a transmitter emits a laser sheet that is received by

a photodiode, within a housing and some appropriate electronics. Parsivel can measure

sizes up to about 25 mm and uses 32 size classes of different widths, spread over 0-26

mm. The lowest two size classes are not used at all because of their low signal-to-noise

ratio. Registration starts only at the lower size bound of class 3 (0.25 mm). As for

the particle size, the velocity is subdivided into 32 uneven classes, starting from 0 and

reaching up to 22.4 ms−1 (upper margin of class 32), thus, Parsivel stores particles in

32x32 matrices. The temporal resolution is generally set to one minute but the new

OTT version, Parisvel2, is capable to increase the resolution time up to 10 s). The

figure 2.9 shows a picture of installed Parsivel. The optical sensor of the instrument

Figure 2.9: A picture of Parsivel.

is a commercially available 780-nm laser diode with a power of 3 mW, producing a

horizontal sheet of light (30 mm wide and 1 mm high). The emitter and receiver are

160 mm apart. In the receiver the light sheet is focused onto a single photodiode. The

transmitter and receiver are mounted in a housing for protection (see section 2c). In
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the absence of drops the receiver produces a 5-V signal at the output of the sensor.

Particles passing through the light sheet cause a decrease of this signal by extinction

and therefore a short reduction of the voltage which amplitude is a measure of particle

size, while the duration of the signal allows an estimate of particle velocity. To elimi-

nate the effect of background light (e.g., sun), the laser is periodically pulsed, and the

output signal is discretely sampled in time as the difference between two consecutive

on and off state of the laser system (the sampling rate is 10 KHz for the older Parsivel

version, while is 25 KHz for Parsivel2). An appropriate algorithm to detect the start

and the end of a signal is implemented in the software.

The particle diameter is calculated from the maximum shadowed area that is related to

the maximum output voltage attenuation, assuming the shape of the particle is known.

Because drops larger than 1 mm are not spherical, the calculation of the equivolume

diameter is based on different axis ratio,x, (vertical over horizontal axis) relationships:

x =



























1 Deq ≤ 1mm

1.075− 0.075Deq 1mm < Deq < 5mm

0.7 Deq ≥ 5mm

(2.9)

where Deq is the equivolume sphere diameter. The 2.9 are valid for raindrops only

because of their sphere-like shape, while if it is applied to other shapes (i.e. snowflakes)

will produce errors in estimation of size and fall velocity. The Parsivel signal, which is

the reduction of the output voltage, is directly related to the shadowed area that can
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be calculated as follows:

Smax =


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(2.10)

where a and b are the major and minor semiaxis of the spheroids, respectively and h is

the height of laser sheet. Anyway, if b ≫
h

2
the shadowed area Smax becomes 2a × h.

The inversion of 2.10 is used to compute Deq assuming

that Deq = 2ax
1

3 = 2bx−
2

3 . However, the only dependable variable measured by Parsivel

is the shadowed area, from which the instruments derived the equivolume diameter

following the plot in figure 2.10.

Figure 2.10: Equivolume diameter Deq vs shadowed area Smax as estimated by the Parsivel
software. Battaglia et al. (2010).
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Again, the relationship shown by figure 2.10 is valid for raindrops only. Once that

Deq has been computed, all drops falling into a given class are assigned the values

corresponding to the center of the size and velocity classes.

2.2.4 Micro Rain Radar (MRR)

The Micro Rain Radar (MRR) is a Continue Wave (CW) Frequency Modulate (FM)

vertical pointing radar based on Doppler effect, that measures the signal backscattered

by hydrometeors (METEK, GmbH, 2004). It is able to determine the vertical profile of

DSD, which is obtained by analyzing the Doppler spectrum recorded, and, as deriva-

tive quantities, rainfall rate, reflectivity, liquid water content, fall velocity and other

parameters. All the quantities are calculated at each gate. The vertical resolution is

variable (it can be set between 10 and 1000 m) and depends on the maximum height

to investigate, with the gates number fixed to 31. The power spectrum is calculated

every ten seconds and the other quantities can be averaged over different time intervals

ranging from 10 to 3600 seconds.

The core component of the radar is a frequency modulated gunn-diode-oscillator with

integrated mixing diode and nominal transmit power of 50 mW. The instrument is a

monostatic linear polarized radar and is composite of the antenna (parabolic dish of 60

cm of diameter) that is connected the transceiver unit; a commercial pc is necessary to

put the instrument in operation. The antenna design allows rainwater to drain without

building ponds. In order to avoid disturbances from snow on the antenna dish, optional

antenna heating is offered.

The MRR operates with electromagnetic radiation at a frequency of 24 GHz with a

modulation depending to the height resolution (e.g. with 300 m 10 m resolution, the

modulation ranges from 0.5 MHz to 15 MHz). The spectral analysis of the received
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Figure 2.11: A picture of MRR.

signal yields a power spectrum (25 per second averaged every 10 s) which is spread

over a range of frequencies lines corresponding to the Doppler frequencies of the signal.

Using known relations between fall velocity, rain drop size and scattering cross section

the drop spectrum (or drop size distribution) is derived. The integration over the entire

drop size distribution results in different parameters, like rain rate, liquid water content,

etc.

The calculation of the DSD from the raw spectral power received by the MRR requires

some easy mathematical steps. The raw spectral power is calculated as follow:

f(n, i) =
1020TF (i)

C

1

i2∆h
η(n, i) (2.11)

where TF (i) and C are the transfer function and calibration radar constant, respec-

tively, ∆h is the range resolution, i is the number of range gate, n is the line number

of Doppler spectrum related to the modulation and η(n, i) is the spectral reflectivity.

To obtain the DSD is necessary to introduce the spectral reflectivity density calculated
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with respect the drop diameter η(D, i)) that is related to the spectral reflectivity η(n, i)

as follows:

η(D, i) = η(v, i)
∂v

∂D
=

η(n, i)

∆v

∂v

∂D
(2.12)

where η(v, i) is the spectral reflectivity density with respect the fall velocity and ∆v is

the fall velocity resolution. Since the MRR is a vertically pointing radar, the fall velocity

of drops will be function of air density, and consequently of the altitude, according what

to Foote and du Toit (1969) found, that is, v ∝ ρ4 where ρ is the air density (Beard,

1977, found a more complex relationship between fall velocity and air density and

viscosity that leads a different results with respect to Foote and du Toit (1969), but

this will be analyzed in more detail in the next chapter). The MRR software uses a

second order approximation to calculate the fall velocity as function of altitude:

v(D, h) = v(0)δh = v(0)(1 + 3.68 · 10−5h+ 1.71 · 10−9h2) (2.13)

where v(0) is the terminal fall speed at sea level calculated according the 2.3. At this

point the DSD for each gate can be estimated:

N(D, i) =
η(D, i)

σb(D)
(2.14)

where σb(D) is the backscattering cross section of drop with diameter D. The DSD is

divided in 64 classes, corresponding to the number of Doppler spectrum deriving from

the modulation, of variable width also as function of gate number.



60 Instrumentation and field campaigns

2.2.5 Joss-Waldvogel (JW)

The Joss-Waldvogel (JW) is an impact disdrometer was originally developed by Joss

and Waldvogel (1967) and is manufactured by Distromet of Basel, Switzerland. The JW

is able to transform the vertical momentum of an impacting raindrop into an electric

pulse whose amplitude is a function of the drop diameter. It consists of a sensor and

signal processing electronics. The sensor has a sampling cross section area of 50 cm2

covered by styrofoam cone. The standard output of the JW is the number ni of drops of

diameter Di that are sorted into 20 size intervals ranging from 0.3 to5.6 mm diameter.

The boundaries of the 20 channels are not uniform and increase with drop size from

0.1 mm to about 0.5 mm. The temporal resolution is 30 s or 1 min. To compute the

drop size distribution, the quantity N(Di), the number density of drops with diameters

corresponding to size class i per unit volume, must first be calculated from the data for

every drop size class, according to the following formula:

N(Di) =
ni

Ai · v(Di) · t ·∆di
(2.15)

where where ni is the number of drops measured in drop size class i; Di is the central

diameter of the drops in size class i (mm); A is the size of the sampling area (50 cm2);

t is the time interval for one measurement (usually set to 60 s); v(Di) (ms-1) is the fall

velocity of a drop with the diameter Di; ∆Di is the diameter interval of drop size class

i (mm). For the terminal velocity, the well-known Gunn and Kinzer (1949) formula is

used.

The JW was originally designed for the purpose of calculating radar reflectivity factor.

The JW is a reliable instrument that can be operated continuously and unattended.

However, it does have three shortcomings: first, it underestimates the number of small

drops in heavy rain. Second, it cannot resolve drop sizes larger than 5.6 mm diameter.
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Third, its calibration assumes that the raindrops are falling at terminal velocity in still

air. Another sources of error is due to the ringing of the styrofoam cone when it is hit

by large drops (known as the disdrometer dead time). This effect cannot be reduced

by any preventive measure, but it can be corrected by mathematical methods.

Figure 2.12: A picture of JW.

2.3 Field campaigns

Data collected in different field campaigns have been used for this Thesis. Not only

DSD data have been analyzed, but also Doppler power spectra, specifically Pludix and

MRR data, rainfall rate, reflectivity and other integral DSD parameters. Sometimes,

depending on the specific purpose, the data have been screened out imposing a thresh-

old (generally on the rainfall rate values). Since the aim of this Thesis is the study of

the collisional break-up and the spatial variability of DSD, the datasets and data types

used for each analysis are different.

About the collisional break-up, the analysis can be divided in two parts: in the first

part only the Pludix power spectra have been analyzed, while in the second part the
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DSD collected by different instruments are used. For both the analysis, from the orig-

inal datasets only the minutes exceeding a RR threshold have been considered, but

while for the part regarding the Pludix power spectra analysis the threshold value was

8mmh−1, for the second part the threshold value was 5mmh−1.

Shown below the characteristics of field campaign which data were used with a brief

description of peculiarities advantages/problems related to each one.

Instrument
Location
(lat,lon)

Altitude
(m a.s.l.)

Minutes
RR > 8mmh−1

Duration
(MM/YY)

Organizer

Pludix
Linzhi
29.77➦N,
94.74➦E

3300 412 10/09-09/10
CEOP-
AEGIS

Pludix Lhasa 29.65➦N,
91.03➦E

3600 6 10/09-09/10
CEOP-
AEGIS

Pludix Wasserkuppe
50.29➦N, 9.56➦E

910 199 12/00-01/03 DWD

Pludix Ferrara
44.5➦N, 11.37➦E

15 169 04/02-06/03 Permanent

Table 2.1: Field campaigns description of Lhasa-Linzhi (Tibet), Wasserkuppe (Germany) and Fer-
rara (Italy).

The table 2.1 describes the field campaigns characteristics reporting the instrument

used, the location, the altitude of location, the number of minutes getting RR over

the threshold (8 mm-1 for this case), the duration of the campaign and the organizer

of the campaign. The three field campaigns described here were carried out at the

really different altitude and their duration ranges from 11 months (Linzhi dataset) to

about 2 years (Wasserkuppe dataset). In particular the field campaign in Linzhi gave

the opportunity to collect, for the first time, DSD data at ground level at very high

altitude, since the instrument was installed on the Tibetan Plateau (TP). The disdro-



2.3. Field campaigns 63

metric campaign was carried out over the TP from November 2009 to September 2010

in the frame of CEOP-AEGIS (Coordinated Asia-European long-term Observing sys-

tem of Qinghai-Tibet Plateau hydro-metOeorological processes and the Asian monsoon

systEm with Ground satellite Image data and numerical Simulations), a Collaborative

EU Project funded under FP7. The CEOP-AEGIS is an international cooperation

project between Europe and Asia to improve knowledge on hydrology and meteorology

of the Tibetan Plateau and its role in climate, monsoon and extreme meteorological

events. Another Pludix was installed in Namco (4700 m a.s.l.; 30.77➦N, 90.99 ➦E) in the

central-eastern part of the Plateau (see Figure 1), to study precipitation characteristics

over the Plateau. Unfortunately, due to a malfunction and the very rare occurrence of

liquid precipitation, the Namco disdrometer was able to operate in very few rain cases,

and was not considered in this study. The Pludix installed in Lhasa had some technical

problems too and its contribution to the field campaign dataset is limited, so that we

refer to Linzhi dataset for simplicity.

The Wasserkuppe campaign was organized by the Deutscher Wetterdienst (DWD) with

the aim to test several instruments as Present Weather Sensor (PWS). The PWS is an

instruments able to automatically describe the weather conditions according to the

World Meteorological Organization (WMO) codes (Prodi et al., 2011). Official re-

ports of Wasserkuppe campaign consists of data from various sources (Bloemink and

Lanzinger, 2005). A number of instruments report the precipitation intensity (mm h-1),

the 2m air temperature (➦C), the 2m relative humidity (%), the 2m wind speed (ms-1)

and the dew point temperature (➦C), and someone the WMO codes also. Moreover, a

human observer reported, with 1-minute time resolution, the weather condition accord-

ing the WMO codes.

The Ferrara dataset was obtained collecting data by a Pludix permanently installed on

the roof of the University. Unfortunately it didn’t work continuously during the period
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reported in table 2.1 and this did not allow to have a great number of minutes to

analyze.

In addition to these, the data collected during HyMeX field campaign have been also an-

alyzed for this first part of the work. HyMeX (HYdrological cycle in the Mediterranean

EXperiment) aims at a better understanding and quantification of the hydrological cy-

cle and related processes in the Mediterranean, with emphasis on high-impact weather

events, inter-annual to decadal variability of the Mediterranean coupled system, and

associated trends in the context of global change. The data collected by both Pludix

and 2DVD and MRR also at three measuring sites have been analyzed. One site was

in center of Italy, La Sapienza (LS) - Rome (41.90➦N, 12.51➦E, 45 m a.s.l.), while the

other two ,Silandro (46.63➦N, 10.78➦E, 720 m a.s.l.) and Trafoi (46.60➦N, 10.55➦E, 1570

m a.s.l.), were in the north of Italy. At LS site were installed one Pludix, one 2DVD

and one MRR, while a 2DVD and a MRR were installed at Silandro and Trafoi sites,

respectively.

According with the rain rate threshold (8 mmh-1) used to select the data of table 2.1,

the dataset of each HyMeX site results in the following minutes: Pludix, LS - 73 min-

utes, 2DVD, LS - 141 minutes, MRR, LS - 196±37 minutes1, Trafoi, MRR - 202±98

minutes2, Silandro, 2DVD - 71 minutes. In addition, also 667 minutes collected with a

JW permanently installed on the roof of the University of Ferrara (not included in the

HyMeX field campaign) have been analyzed.

The second part of break-up study concerned the only DSD analysis.The data that

are used in this analysis were collected by 2DVD and Parsivel2 in six different field

campaigns that are conducted under Global Precipitation Measurement (GPM) mis-

1For MMR data the number of minutes has been estimated calculating mean and standard devia-
tion over all radar levels, because each level has different number of minutes exceeding the threshold
considered.

2
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sion, ground validation (GV) program (Hou et al., 2014). The number of instruments,

the seasonality, the location, and the duration of the field studies vary from one site

to another and are listed in table 2.2. The first column of table 2.2 reports also

the city of operational center of each campaign, while the instruments were collocated

at various distances ranging from hundred meters to about 110 km. The size of the

datasets used in this study ranged from about 140 minutes during Light Precipitation

Validation Experiment (LPVEX) to the about 4200 minutes during Iowa Flood Studies

(IFLOODS) as noted in table 2.2. The Parsivel2 data were collected in three of the six

field campaigns and the dataset size ranges from about 6500 minutes of Wallops Flight

Facility (Wallops) to about 9400 minutes of Integrated Precipitation and Hydrology

EXperiment (IPHEX). For the other three sites, Parsivel (previous version of Parsivel2)

is operated. Since data quality of Parsivel2 is significantly better than old model (Tokay

et al., 2014b), we decided to do not use the Parsivel data.

Both for 2DVD and Parsivel2 the RR threshold used was 5 mmh-1 instead of 8 mmh-1

used for Pludix analysis. The availability of several instruments allowed to collect, in

such cases, very large datasets. Two of these six datasets were used for the DSD spatial

variability too, namely Wallops and MC3E, since the distances between the instruments

allow to analyze the spatial variability at small scale. About that analysis a threshold

was imposed both for RR and reflectivity at Ka and Ku band, but these aspects will be

detailed treated in the dedicated chapter.

The IFLOODS is a ground measurement campaign taking place in eastern Iowa. The

goals of the campaign are to collect detailed measurements of precipitation at the

Earth’s surface using ground instruments and advanced weather radars and, simulta-

neously, collect data from satellites passing overhead. The ground instruments char-

acterized precipitation (the size and shape of raindrops, the physics of ice and liquid

particles throughout the cloud and below as it falls, temperature, air moisture, and
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distribution of different size droplets) to improve rainfall estimates from the satellites,

and in particular the algorithms that interpret raw data for the GPM mission’s Core

Observatory satellite, launched in February 2014.

The MC3E campaign took place near Lamont, Oklahoma. The experiment was a collab-

orative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation

Measurement (ARM) Climate Research Facility and the NASA’s GPM mission GV

program. GPM field campaign objectives were to collect a comprehensive set of obser-

vations describing precipitation microphysics over continents during the warm season.

The observations are used to refine GPM retrieval algorithms over land. At the same

time, DOE objectives focused on relating the cloud microphysical observations to ac-

companying observations of cloud-kinematics and the surrounding environment.

The IPHEX is a ground validation field campaign that took place in the southern Ap-

palachian Mountains in the eastern United States. IPHEx is co-led by NASA’s GPM

mission, with partners at Duke University and NOAA’s Hydrometerological Testbed.

The field campaign had two primary goals. The first is to evaluate how well obser-

vations from precipitation-monitoring satellites, including the recently launched GPM

Core Observatory, match up to the best estimate of the true precipitation measured

at ground level and how that precipitation is distributed in clouds. The second is to

use the collected precipitation data to evaluate models that describe and predict the

hydrology of the region.

The LPVEX campaign took place in the Gulf of Finland and collected microphysical

properties, associated remote sensing observations, and coordinated model simulations

of high latitude precipitation systems to drive the evaluation and development of pre-

cipitation algorithms for current and future satellite platforms. Specifically, LPVEX

sought to characterize the ability of CloudSat, the GPM-DPR (Dual-Frequency Pre-

cipitation Radar), and existing/planned passive microwave (PMW) sensors such as
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the GPM microwave imager (GMI) to detect light rain and evaluate their estimates of

rainfall intensity in high latitude, shallow freezing level environments. Through the col-

lection of additional microphysical and environmental parameters, the campaign also

sought to better understand the process of light rainfall formation and augment the

currently limited database of light rainfall microphysical properties that form the crit-

ical assumptions at the root of satellite retrieval algorithms.

NASA’s Wallops Flight Facility, located on Virginia’s Eastern Shore, was established

in 1945 by the National Advisory Committee for Aeronautics as a center for aeronautic

research. Today, Wallops is NASA’s principal facility for management and implementa-

tion of suborbital research programs. In the six Wallops sites where 2DVD and Parsivel

were installed, several other instruments are installed too, as rain gauges, radar, etc.
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Field campaign Location Duration
# of 2DVD and
one-minute data

(> 5mmh−1)

# of Parsivel2 and
one-minute data

(> 5mmh−1)

Iowa Flood Studies
(IFLOODS) Iowa
City and Waterloo,

Iowa

42➦N, 92➦W
May to June

2013
6 - (4222) 14 (7520)

Midlatitude
Continental

Convective Clouds
Experiment (MC3E)

Ponca City,
Oklahoma

36➦N, 97 ➦W
April to June

2011
7 - (968) /

Wallops Flight
Facility (Wallops)
Wallops Island,

Virginia

37➦N, 75➦W
July 2013 to
March 2014

6 (3912) 6 (6446)

Alabama Huntsville,
(Alabama)

35 ➦N, 87➦W
December

2009 to June
2010

3 (904) /

Integrated
Precipitation and

Hydrology
EXperiment

(IPHEX) Ashville,
North Carolina

35➦N, 83➦W
May to June

2014
5 (2114) 12- (9316)

Light Precipitation
Validation
Experiment

(LPVEX) Helsinki,
Finland

60➦N, 24 ➦E
September to
December

2010
3 - (134) /

Table 2.2: Field campaigns description of IFLOODS, MC3E, Wallops, Alabama, IPHEX and LPVEX.



Chapter 3

Collisional Break-up: detection and

analysis

The collisional break-up is one of the most important process in rain formation and

affects substantially the microphysical structure of the rain layer. Many laboratory and

experimental studies (Low and List, 1982a,b; McFarquhar, 2004; Prat and Barros, 2007)

have been conducted to understand this phenomenon. These studies demonstrated that

the shape of DSD moves away from log-normal trend when break-up is present, showing

a two or three peaks spectrum at well defined diameters. The break-up, together

with the other rain processes, have been introduced in Chapter 1, and in this Chapter

will be reported the results obtained in the detection of break-up occurrence from

ground based disdrometric measurements. The first step to study the break-up in

natural rain focused on the analysis of Pludix power spectrum, that presents particular

shape in correspondence of break-up occurrence. Then, the unprecedented availability

of disdrometric datasets at different altitudes, allowed to study the effect of reduced

air density on the break-up mechanism, and to asses the dependance of the break-up

69
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diameter on the altitude, finding a limiting value of CKE. Since the study of break-up

analyzing the Doppler power spectrum is possible only using instruments based on the

Doppler effect (such as POSS, Pludix and MRR) and since most disdrometers are based

on different measuring principle, the study has been focused on the DSD data analysis

with the aim to detect the break-up occurrence by investigating the DSD directly.

Finally, some case studies will be shown with the aim to individuate the development

of break-up up to the reaching of the equilibrium DSD.

3.1 Pludix power spectrum

The Pludix output is the Doppler power spectrum obtained sampling the power backscat-

tered by falling hydrometeors during one minute interval, as function of Doppler shift

frequencies. The Doppler frequencies are function of the terminal fall speed of drops

according to the equation 2.4. Figure 3.1 reports, as an example, some Pludix power

spectra referred to sea level measurements during a rain event showing both rain (solid

lines) and no-rain (dashed lines) minutes.

During the rain event the Doppler spectrum presents a bump generally between 200

and 600 Hz (these are the Doppler frequencies generated by falling drops at sea level),

with the power peak ranging in this interval. The increse of power at low frequencies is

an instrument noise, and it is screened out before the inversion process to estimate the

DSD. The power is function of drops concentration and size and it is an indicator of the

intensity of precipitation, the higher the RR the greater the backscattered power. The

figure 3.1 shows also a sort of symmetry of the bump generated by rain with respect

to the power peak, for few frequency intervals, and this feature will be relevant for our

break-up detection purposes.
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Figure 3.1: An example of Pludix power spectra during a rain event (solid lines). No-rain
Doppler spectra are also shown (dashed lines). The x-axis reports the Doppler shift frequency
(Hz) of falling drops, while the y-axis the power backscattered by the drops population.

3.2 Break-up detection algorithms

In this section will be reported the structure of the two algorithms developed to detected

break-up occurrence in natural rain. The first one is based on the analysis of Pludix

power spectrum only and can be applied only to instruments that give a Doppler power

spectrum as output. Due to this limitation, it was mandatory to extend the break-up

analysis to the instruments that measures DSD directly. This because of the most part

of disdrometers are based on different working principles (2DVD, Parsivel, etc.) and

their output is the DSD. So the second algorithm described here works on the DSD data.
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3.2.1 Power Spectrum (PS) algorithm

In the Section 3.1 the characteristics of Pludix power spectrum have been described,

highlighting the symmetry of the power peak obtained during a precipitative event.

This property is lost when break-up is the dominant process and the Doppler spectrum

shows an abrupt decrease of the power immediately after the power peak (i. e. an order

of magnitude of power decrease in about 50 Hz, as estimated by Prodi et al., 2011).

This feature is not easy to observe because of the scarcity of these events in natural

rain. Figure 3.2 shows the differences between Pludix power spectra where break-up

is dominant (dotted line) and where is not (solid line), resulting in a different shape of

the maximum and in the slope of the power after it. The Doppler frequencies interested

by the break-up phenomenon are usually those in the final part of ”rain band”, that is,

around 600 Hz at sea level.

To automatically recognize the break-up signature in the Pludix power spectrum a

simple algorithm (PS algorithm) has been written. Before to apply the algorithm, the

Pludix power spectra are smoothed in order to screen out noise that can grow in the

computation of the first derivative of the spectrum.

For each minute spectrum with rain rate larger than 8 mm h-1, the normalized backward

derivative of the received power with respect to the Doppler frequency is calculated in

the interval 300-900 Hz, for the i-th frequency value, as follows:

δi =
pi − pi+1

pi

1

∆f
(3.1)

where pi and pi+1 the backscattered power of i-th and (i+1)-th Doppler frequency,

respectively and ∆f is the frequency interval (1 Hz in this case). The choice to calculate

the backward derivative (hereafter referred as ”derivative”) is to work with positive

values in the region of interest. Generally, the derivative will assume a positive value
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Figure 3.2: An example of Pludix power spectra with dominant break-up (dotted line) and
non (solid line).

with higher values in correspondence of minutes dominated by break-up. The lower-end

of the interval has been chosen at 300 Hz to check if the break-up phenomenon may

occur at small diameters, while the upper-end has been chosen at 900 Hz in order to

consider also cases where the dorp fall velocity are higher than the Gunn and Kinzer

(1949) values, as it is for higher elevation data, as it will shown in the next Sections.

To have more stable and robust values, the derivate value assigned to each frequency is

calculated by averaging the eleven derivatives of the interval centered on the considered

point, that is:

δi =
i+5
∑

n=i−5

δn
11

(3.2)

The selected minutes are sorted according to the derivative values, from the lowest to

the highest. The frequency corresponding to the power peak is selected as the fre-
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quency for which the power starts decreasing, assumed as a robust indication of the

drop size where break-up becomes significant for the considered minute. The under-

lying assumption for this choice is that, as the drop size and rain rate increase, both

power and frequency of the peak increase, but the increase in frequency is limited by

the break-up as the maximum drop size is reached.

3.2.2 DSD Spectrum (DS) algorithm

In the Chapter 1 has been analyzed in detail the signature of break-up on the DSD.

As a result of break-up, drops around 1.5 mm are depleted, while there is an increase of

small drops (less than 1 mm in diameter) and an increase of drops around 2-3 mm. The

peak at small diameters is more marked than the one at larger size. It should be noted

that it is impossible to recognize the break-up situations only by this feature because it

could be due to other factors that occur within and above the precipitation layer. Not

even the second peak, at larger diameter, represents a feature sufficient to recognize

the break-up because can also be a product of coalescence (McFarquhar, 2004). The

relative minimum and maximum in the range 1.0-2.6 mm can be taken as reference to

identify the break-up.

To detect the break-up analyzing the DSD looking for the relative minimum and max-

imum in the range 1.0-2.6 mm, another simple algorithm (DS algorithm) has been

written. The DS algorithm has been written for the DSD characteristics of Pludix (di-

ameter bin width 0.3 mm) but has been applied, with the appropriate modifications,

given the different diameter bin width of the other disdrometers, to the DSDs collected

by the other instruments (2DVD, JW). The following description of the DS algorithm

is referred to the DSD characteristics of Pludix:
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❼ minutes with RR higher than 8 mmh-1 are selected;

❼ the point by point DSD spectrum normalized derivative between 1.55 mm and

2.45 mm diameter is calculated (ascending derivative);

❼ the point by point DSD spectrum normalized backward derivative for diameters

larger than 2.45 mm is calculated (descending derivative);

❼ the ten minutes with the highest summation of ascending and descending deriva-

tive value are considered as break-up minutes;

❼ the central diameter of diametral class with the maximum descending derivative

is considered as break-up diameter;

❼ finally the mean break-up diameter, with its standard deviation, is estimated for

each considered minute.

The figure 3.3 shows the working principle of the DS algorithm.

3.3 Dependence of collisional break-up on altitude

The data analyzed with both PS and DS algorithm were collected at different altitude.

While this aspect has not consequence for the application of DS algorithm, some im-

plications about result for the application of PS algorithm. In fact, at altitude higher

than sea level, the Doppler frequencies generated by the falling drops are greater due to

the different air density. For this reason, the choice of 900 Hz as upper-end of Doppler

frequency interval for the PS algorithm application is necessary for the analysis of spec-

tra collected ad higher altitude (namely Wasserkuppe and Linzhi).
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Figure 3.3: The ascending and descending derivative as individuated by DS algorithm.

There are empirical evidences that, for spheroidal shapes, the Drag coefficient (CD),

for high Reynolds numbers, does not change appreciably with the Reynolds number

(Spilhaus, 1948; Kessler, 1969). Writing the CD of a drop with mass M and diameter

d as:

CD =
8M(ρw − ρ)g

ρwπd2ρv2
(3.3)

where g is the gravitational acceleration, ρ and ρw are the air and water density, re-

spectively and v is the fall velocity of drop. Considering a change of altitude, the term

8M(ρw − ρ)g/ρwπd
2 is constant and the assumption that also CD is constant leads to
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the relationship:

ρv2 = ρ0v
2
0 (3.4)

where the subscript 0 refers to the sea level. The equation 3.4 shows that decreasing

the air density, the terminal fall velocity of drops increases. An empirical relationship

between rain drop diameter and terminal velocity at different altitudes was derived by

Beard (1977), for drops with 40µm . d . 6mm. The equation can be written in the

form:

V = V0(α + βX) (3.5)

with

α = 1 + ǫs(T ) (3.6)

β = [1.058 · ǫc(ρ)− 1.104 · ǫs(T )] /5.01 (3.7)

X = ln(D) + 5.52 (3.8)

where V0 is a basic state (sea level) velocity in m s-1 for saturated air at 1013 hPa

and 20➦C, T is the air temperature in Kelvin, ρ is the air density in kg m-3, ǫs is the

velocity deviation from Stokes drag and ǫc is the velocity deviation for a constant drag

coefficient. At any level aloft, the values of α and β are computed from the simple

expressions:

ǫs(T ) =
η

η0
− 1 (3.9)

ǫc(ρ) =

(

ρ

ρ0

)
1

2

− 1 (3.10)
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where

η ≈ 1.832 · 10−5 {1 + 0.00266 [T (K)− 296]} (3.11)

ρ ≈ 0.348 ·
p(hPa)

T (K)
(3.12)

and η is the dynamic viscosity in kg m-1 s-1, η0 is the basic state dynamic viscosity at

1013 hPa and 20➦C equal to 1.818 · 10-5 kg m-1 s-1, p is the static air pressure in hPa

and ρ0 is the basic state air density at sea level pressure and 20➦C equal to 1.204 kg

m-3.

Foote and du Toit (1969) used another, but probably less accurate, form to calculate

the terminal fall speed at arbitrary atmospheric conditions. The relation arises from

the Davies data, reported by Sutton (1942) and also published by Best (1950) and

estimates the terminal fall speed at any level aloft:

V (D) = V0(D)

(

ρ0
ρ

)0.4

(3.13)

where V0(D) is the terminal fall velocity calculated at sea level according to Gunn

and Kinzer (1949), ρ0 and ρ are the air density at sea level and at considered altitude

respectively. Both using the Beard (1977) or Foote and du Toit (1969) approximation,

the air pressure at a given altitude can be obtained or by measurements or by applying

the equation valid for the standard atmosphere:

p = p0e
−

gZ

RT (3.14)

where p0 is the atmospheric pressure at sea level at standard conditions, g is the grav-

itational acceleration in m s-1, Z is the altitude considered in m, R is the universal
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gas constant equal to 8.314 J mol-1 and T the temperature in K. Consequently, the air

density ρ can be calculated from the relation p = ρRT .
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Figure 3.4: The v-D relationship calculated for the three datasets described in 2.1 according
to Beard (1977). The v-D relationship for Linzhi altitude is calculated also according to Foote
and du Toit (1969).

The figure 3.4 shows the v-D relationship for given p and T at Ferrara (solid line),

Wasserkuppe (dash-dot line) and Linzhi (dotted line) according to equation 3.5. The

equation 3.5 for given p and T at Ferrara reduces to the 2.3. The air pressure and tem-

perature are obtained averaging the measurements carried out during the precipitative

events in each of the three sites. These values are used to calculate the v-D relationship

at Linzhi and Wasserkuppe also according to equation 3.13 (dotted and dash-dot line

respectively). The terminal fall velocity, for a given drop diameter, increases increasing

the altitude (i.e. for large diameter, at 680 mb is expected an increase of about 30%

with respect the sea level). The Foote and du Toit (1969) v-D relationship, here cal-
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culated for the Linzhi air density (dash line) underestimates the terminal fall velocity

with respect to what obtained by Beard (1977) relationship, and we decided to use the

latter because of its explicit dependence on the air temperature.

The fall velocity modification with altitude has consequences on the Doppler frequen-

cies interested by falling drops. Consequently the frequency band limits are modified at

Wasserkuppe and Linzhi. For this reason the upper-end limit of the PS algorithm has

been chosen at 900 Hz. The table 3.1 reports the frequency band limits of Pludix for

the corresponding diameter band limits for the three locations. The table 3.1 shows

also that the width of the frequency intervals of the classes corresponding to the larger

drop diameters, is lower than the width of the frequency intervals of the classes corre-

sponding to the smaller diameters, regardless the location. For diameters larger than

6 mm diameter the corresponding Doppler frequencies are not reported because of the

size limitation of Beard relation.
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Frequency (Hz)

D (mm) Ferrara Wasserkuppe Linzhi

0.8 208 220 256
1.1 274 292 314
1.4 330 351 413
1.7 377 402 474
2.0 416 444 526
2.3 448 479 569
2.6 475 508 606
2.9 498 533 637
3.2 517 554 663
3.5 533 571 685
3.8 549 585 704
4.1 557 598 720
4.4 566 608 733
4.7 574 616 744
5.0 580 624 754
5.3 585 630 762
5.6 590 635 770
5.9 594 639 777
6.2 597
6.5 599
6.8 602
7.1 604

Table 3.1: Diameter and Doppler frequency limit of the 21 Pludix bands for sea level (Ferrara),
950 m a.s.l. (Wasserkuppe) and 3300m a.s.l. (Linzhi).
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3.3.1 PS algorithm: results

The PS algorithm has been applied to the three datasets and the Pludix power spectra

ranked according the derivative values. The figure 3.5 reports the ten Pludix power

spectra with the highest derivative values according the PS algorithm.
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Figure 3.5: Pludix power spectra for 10 selected break-up minutes by PS algorithm in the (a)
Ferrara, (b) Wasserkuppe, and (c) LinZhi experimental sites.

The maximum decrease of power spectrum occurs in a rather narrow frequency interval
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for the three sites (figure 3.5), showing that these frequency limits might be regarded as

a characteristic of the experimental site and, thus, the altitude. It can also be observed

that the break-up power spectra are characterized by different power values, indicating

that the phenomenon can occur at different rain rates. This is clearly evident for LinZhi

data (figure 3.5c) where the power intensity for the two minutes is much higher than

the others, but the break-up frequencies are very similar. The power spectra reported

in 3.5a and 3.5b show slightly different shapes for the Linzhi site (figure 3.5c), except

for the two more-intense minutes: here the drops are comparatively smaller and the

backscattering cross sections are closer each other. Therefore, the spectra show a slow

decrease (a sort of plateau) for frequencies smaller than the frequency of the power

peak. At lower altitudes, drops are larger and the differences among backscattering

cross sections are more marked, resulting in a sharper power peak, since the backscat-

tering cross sections in the Mie theory depend on fifth and lower power of the drop

radius.

To estimate the break-up diameter (the diameter derived from the frequency of the

power peak), the V-D relationship has to be applied. At sea level, Ferrara site, the

Gunn and Kinzer (1949) V-D relationship can be used, but for the other two sites is

used the V-D relationship suggested by Beard (1977). Before to apply the V-D rela-

tionship, the terminal fall velocity of the frequency of the power peak is obtained from

the equation 2.4 and an estimate of the break-up diameter at different heights can be

obtained, as reported in 3.2.

In Table 3.2 the uncertainties estimated for each parameter are also reported. The

standard deviation of the distribution of the power peak frequencies is considered as

the uncertainty of the break-up frequency; this error is then propagated to velocity

and diameter and reported. These uncertainties are originated by natural fluctuations

of cloud microphysics and by the deviations of the environmental conditions from the
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values reported in figure 3.4, used for the diameter retrieval.

Site
Alititude
(m ASL)

f(Hz)
σf

(Hz)
v

(ms-1)
σv

(ms-1)
D

(mm)
σD

(mm)

Ferrara 15 569 9 8.98 0.14 4.55 0.35
Wasserkuppe 950 587 10 9.25 0.16 4.02 0.32

Linzhi 3300 652 24 10.28 0.38 3.16 0.3

Table 3.2: Diameter and Doppler frequency limit of the 21 Pludix bands for sea level (Ferrara),
950 m a.s.l. (Wasserkuppe) and 3300m a.s.l. (Linzhi).

3.3.2 CKE limiting value

The effect of altitude is clearly to reduce the size of the break-up diameter, which de-

creases as altitude increases. Because the air viscosity and the water surface tension

depend slightly on temperature, which is very similar in the three sites, the main factor

affecting the break-up mechanism is air density: a reduction in air density results in

an increase of the drop terminal velocity and thus in an increase in the kinetic energy

of the collision between larger and smaller drops. Following Low and List (1982a), the

break-up takes place when the CKE supplied to the system during the collision is not

dissipated by the system itself by viscous deformation and oscillations of the merged

drop, whose diameter of the equivolumetric sphere is (D3
S +D3

L)
1

3 . A detailed balance

of the collision energy budget is hindered by the impossibility to properly define, both

experimentally and theoretically, relevant features determining the budget. As an ex-

ample, the difference between surface energy of the two drops before the collision and

the drop after the collision may vary by one order of magnitude, depending on the drop

shape, known to be strongly irregular and rapidly changing across and immediately
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after the collision process. Furthermore, the drag on the drop surface depends on the

drop shape and the section perpendicular to the motion direction. Finally, oscillations

and internal circulation dynamics are also unknown for large, unstable drops close to

their break-up size.

In this uncertainty frame, a strong constraint is provided, determining a reliable value

for the maximum drop velocity, from which the break-up diameter can be straight-

forwardly derived, relying on well-established v-D relationships. These results can be

exploited by estimating CKE (not dependent on the drop shape) for the three sites

considered following the equation 1.2.
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Figure 3.6: CKE (J) as a function of the DS (mm) in the collision: for each site are plotted
the curves for DL ± σDL

(mm).

In figure 3.6 the CKE values for the three sites are plotted as function of DS (mm) for

the respective break-up diameters reported in table 3.2: two curves are reported for
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each site, one for DL−σ(DL) and one for DL+σ(DL) to indicate the range of possible

break-up drop sizes, within estimated uncertainties. The maximum CKE is reached

when DS is between 1.5 and 2.0 mm and its maximum value is similar for the three

sites (within 5%), if DL+σ(DL) curves are considered, indicating that a CKE of about

1.22µJ is able to disrupt the drops regardless of the altitude and can be assumed as a

limiting value of the kinetic energy that can be absorbed by a drop collision. Of course,

the disruption may also occur for lower diameters, owing to the particular alterations

of the break-up mechanisms that are likely to take place in real rain.

3.3.3 DS algorithm: results

The figure 3.7 shows the ten DSDs selected by the DS algorithm at Ferrara, Wasserkuppe

and Linzhi analyzing the Pludix data. The results show a marked agreement with what

the theoretical model find as equilibrium DSD (figure 1.9), with DSD that presents a

relative minimum followed by a relative maximum in the diameter range 1.5-3.0 mm.

The DSDs shape are very similar regardless the altitude with the relative increase in

number of drops slightly marked at Linzhi site (figure 3.7c).

The figure 3.8 summarizes the estimated break-up diameter for all measurement sites

using DS, PS or both techniques depending on the instrument type. For the sites where

both DS and PS technique is applied, very close values of breakup diameter are found.

The general trend of the graph shows a decrease of break-up diameter with altitude

due to the reduced air density and viscosity that influences the size reached by drops.

Referring to the legend in the figure 3.8, ”LS” indicates La Sapienza site while ”Plx”

stays for Pludix. The 2DVD and JW data are analyzed by applying the DS algorithm

while the PS algorithm has been applied to the MRR data. In particular, the MRR

break-up diameter has been estimated averaging four consecutive levels so that just
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Figure 3.7: Pludix DSDs for 10 selected break-up minutes by DS algorithm in the (a) Ferrara,
(b) Wasserkuppe, and (c) Linzhi experimental sites.

eight values of break-up diameter are found for the 1000 m investigated by the instru-

ment. The break-up diameter was not estimated for each level because the vertical

resolution of the instrument is 35 m and, substantially, there is not appreciable varia-

tion of break-up diameter for two consecutive levels. On the other side, estimating the

break-up diameter averaging four consecutive levels, there is not a significant variation
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in fall velocity of drops and in Doppler frequency generated, as well.
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Figure 3.8: Trend of the estimated break-up diameter as function of altitude and algorithm
applied.

To completion the analysis, the DSDs corresponding to the ten minutes selected as

break-up by PS algorithm are reported for the Ferrara site. The figure 3.9 shows

that the DSD shape is in good agreement with the findings of the DS algorithm and

the theoretical models too. A very important feature resulting from DSDs selected as

break-up by both PS and DS algorithm is their similarity, almost coincidence, with

what theoretical models describe as equilibrium DSD (McFarquhar, 2004; Prat and

Barros, 2007).
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Figure 3.9: DSDs corresponding to the ten break-up minutes as selected by PS algorithm for
the Ferrara site.

3.4 Break-up: case studies

In order to describe the evolution of different rain events, with particular emphasis to

the development of equilibrium DSD, four case studies were selected from the Linzhi

(three cases) and Lhasa (one case) stations as summarized in table 3.3. The choice of

case studies over Tibetan Plateau is due to the greater ease in reaching the equilibrium

DSD during a rain event.

The 1-minute Pludix data are averaged over 2 minutes for mainly convective, short

lived cases (numbers 1 and 2 in table 3.3) and over 5 minutes for long lasting, mixed

convective-stratiform cases (numbers 3 and 4). This was done as a trade-off between

the need to analyze the fine temporal scale of the precipitation structure and the clar-



90 Collisional Break-up: detection and analysis

#
DD/MM/YY

Site Type of rain
max RR
(mmh-1)

RA (mm)

1 23/07/10 Lhasa weak convective 12.15 1.35
2 9/07/10 Linzhi deep convective 372.6 38.12
3 31/08/10 Linzhi mixed 28.46 29.41
4 05/09/10 Linzhi mixed 22.13 33.74

Table 3.3: Characteristics of the four case studies analyzed. The type of cloud/rain is assessed
by looking also at satellite images.

ity of the DSD representation. The study was carried out by analyzing rain rate, DSD

spectra, and Pludix power spectra. Here, only two cases are reported, namely the cases

2 and 3 on table 3.3, the former for the exceptional rain intensity recored, the latter

for the clear evolution during its long duration.

29 July 2010

A large convective cluster developed in the early morning (local time) over the Linzhi

area (Eastern TP). Satellite infrared images (not shown here) report cloud top mini-

mum temperature around 205 K and the rain event lasted several hours. The system

hit the Linzhi site at different stages and we concentrate our analysis on a single rain

shower occurring between 15:30 and 16:00 UTC. In figure 3.10a the 2-min average

rain rate is reported, showing a peak of about 370 mm h-1 and values above 10 mm

h-1 for the rest of the time. The DSD spectra plotted in figure 3.10b show that the

highest rain rate intensities (cyan tones) are due to an increase in drop numbers for

all diameters, but especially around 1 mm and between 2 and 3 mm highlighting the

presence of equilibrium DSD in this case. The DSDs before (blue lines) and after (red

lines) the main rain rate shower are rather different in the number of drops larger than

1.5 mm, which is higher before the shower and markedly reduced after, possibly due to
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Figure 3.10: Pludix DSDs for 10 selected break-up minutes by DS algorithm in the (a) Ferrara,
(b) Wasserkuppe, and (c) Linzhi experimental sites.

the presence of an updraft current in the early stage of the event and the depletion of

larger drop numbers after the main shower, as is usually found in convective events.

The power spectrum curves reported in 3.10c show peaks between 400 and 650 Hz,

indicating great variability of the DSD throughout the event. For this extreme episode,

there is a sharp decrease in the power after the peak and the frequencies affected by



92 Collisional Break-up: detection and analysis

the marked decrease are similar to each other at different rain rates. This indicates

that the maximum break-up size has similar values, even if the number of drops and

the rain rate greatly differ.

A significant number of large drops (around 5 mm, exceeding the limit estimated by

Porcú et al., 2013) is found for the highest rainrate minutes, as also reported by Niu et

al. (2010) for DSD measurements carried on at 1753 m a.s.l. A plausible explanation

for such behavior can be attempted along the following lines. First, break-up occurs

during the high rain rate minutes, but given the high drop concentration, the products

of the break-up may re-combine to form large, highly unstable drops that can break-up

again very easily. A second possible explanation could be the presence in the large

drops of an ice core that makes the drop more stable and able to reach larger sizes.

The presence of super-terminal drops (Montero-Martinez et al., 2009) could also affect

the results. Additionally, during such intense rain showers, many complex interactions

may take place among drops and other hydrometeors that cannot be resolved with the

present study, given also the rarity of such extreme events.

31 August 2010

The event was characterized by long lasting stratified precipitation with moderate em-

bedded convection, and rain rate ranging from 1 to 16 mm h-1, as shown in figure 3.11a.

The single peak of the DSD is around 1.1 mm and the DSDs corresponding to low rain

rate minutes have very similar shapes according to the exponential trend. For the more

intense rain rate, about 16 mm h-1 (dark yellow symbols in figure 3.11a around 17:30

UTC), the DSD changes concavity because of the increase in drops of all sizes, but

especially around 3 mm, as reported in figure 3.11b. Looking at the Pludix power

spectra (figure 3.11c), the rapid decrease of the power of the yellow lines around 700

Hz indicates the likely occurrence of break-up. The transition between moderate and
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Figure 3.11: Pludix DSDs for 10 selected break-up minutes by DS algorithm in the (a) Ferrara,
(b) Wasserkuppe, and (c) Linzhi experimental sites.

intense rain rates is marked by changes in the power spectra shapes. In the present

case, however, the break-up DSD does not show the relative depletion of drops around

2 mm diameter, as reported in figures 3.10a and 3.11a: this indicates that break-up is

occurring but is not yet able to increase significantly the number of very small drops.

A further explanation is that this convective episode is part of a long lasting, mainly
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stratified event, while the previous case is related to convective cell.



Chapter 4

Collisional Break-up and

Equilibrium DSD

The extensive experimental activity related to the NASA GV-GPM program has made

available an exceptional dataset, characterized by the use of more advanced instruments

(2DVD and Parsivel2), the meticulous quality control, the high number of instruments

used and the total number of recorded rain minute (more than 12,000 minutes), as

summarized in Chapter 2. Such a large dataset made it possible a detailed study of

the break-up occurrence in natural rain, and of the evolution of the DSD towards the

equilibrium DSD. To this purpose, the DS algorithm has been reshaped and improved

in a new automatic break-up detection algorithm (called SLOPE algorithm) set up for

the 2DVD characteristics. It has to be specified that, also according to the results ob-

tained by Pludix power spectrum and DSD analysis ( 3), the break-up is a fundamental

mechanism to reach the equilibrium DSD. So, here we refer to break-up and equilibrium

DSD in an equivalent manner.

In this chapter the SLOPE algorithm will be described and its application on the GV-

95
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GPM analyzed, evaluating the relative occurrence of equilibrium DSD in natural rain.

Moreover, the ability of the gamma distribution to fit the equilibrium DSD is discussed

and the properties of rain and DSD parameters as function of break-up illustrated.

4.1 SLOPE algorithm

The SLOPE algorithm is designed to recognize the break-up features in the DSD. It is

developed primarily for 2DVD DSD, which is sampled at uniform size bin, but is also

applied to Parsivel DSD, where the raw output contains drop counts at uneven size

bins. The algorithm consists of five steps as follows:

❼ The linear best fit of the considered DSD is calculated over a five diameter bins

from smaller (starting point) to larger diameters.

❼ Four different starting points are considered between 1.0 and 1.6 mm with steps

of 0.2 mm. This results in four linear relationships.

❼ The highest slope (HS) of the four linear best fits is considered as reference to

label the DSD.

❼ The individual DSDs are sorted from the lowest (negative) to the highest (possibly

positive) HS value. HS ranges from -4.56 to 1.97 m-3 mm-2.

❼ A total of six classes are introduced based on HS. Most of the DSDs have slope

between 0 and -2 m-3 mm-2, and this interval is divided into four classes with 0.5

m-3 mm-2 increment (classes 2 to 5), and the remaining two classes are defined

with HS > 0 m-3 mm-2 (class 1) and with HS < −2 m-3 mm-2 (class 6).

The algorithm analyzes the DSD between 1.0 and 2.6 mm diameter computing the

slope of the linear best fit and ranks the DSDs accordingly. The figure 4.1 shows
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three different examples of DSD with different values of HS as identified by the SLOPE

algorithm. The dotted lines represent the liner fit; due to the figure deformation, the

dotted lines emphasize the real value of HS reported in the legend figure. The linear fit

is reliable and robust in identifying the changes in slope of DSD and avoids recognizing

as break-up situations isolated spikes (as could happen applying the DS algorithm),

due to the natural DSD variability at such short time scales.
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Figure 4.1: Three examples of DSD with different HS values. The dotted lines do not represent
the real HS values because of the figure deformation.

The one-minute disdrometer observations are averaged over two, three and five minutes

to have a more stable sampling. A sensitivity study has been conducted to evaluate

the difference in using different temporal sampling and no significant discrepancy is
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found in the results. For this reason, has been choose to use the two-minute average.

Moreover, a minimum rainfall threshold of 5 mmh-1 is adopted to eliminate light rain

since break-up takes place mainly in convective rain (Li et al., 2009). The 8 mmh-1

threshold used for both PS and DS algorithm, has been replaced by 5 mmh-1 threshold

because, for these datasets, a sensitivity study to different rainfall threshold of 5, 6, 7

and 8 mmh-1 has been made. The results don’t reveal particular differences by using

the different RR thresholds. Consequently, the 5 mmh-1 threshold has been choose to

have the highest number of samples.

4.1.1 SLOPE algorithm: 2DVD results

The SLOPE algorithm has been applied to the DSD data of the GV-GPM program

(table 2.2). In this section will discuss the results referred to 2DVD data only. The

2DVD derived DSDs averaged on the six HS classes defined according the SLOPE

algorithm for the six field campaigns are shown. The number of two-minutes averages

(hereafter referred as samples) for each class is also given.

In figure 4.2 the mean DSD of each HS class for the all six field campaigns are shown.

A concave down DSD shape with a single peak is observed in all six sites for classes

5 and 6. The peak occurred at diameter between 0.5 and 1.0 mm and the relatively

low concentration of smaller size drops is primarily attributed to the underestimation of

small drops by 2DVD (Tokay et al., 2013). For the remaining four classes, a well-defined

peak occurred at 0.3 mm. For class 1, the DSD had a sharp decrease in concentration

from the peak to around 1.0 mm followed by a plateau where the concentration slightly

increases without changing significantly with size, until 2.0 mm. A secondary maximum

was observed at around 2 mm at most of the sites followed by exponential decrease with

increasing drop sizes.
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Figure 4.2: Mean DSD for each HS class for each field campaign from 2DVD data.
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The DSDs with positive HS (class 1) have good agreement with those obtained by

different models and defined as equilibrium DSD (McFarquhar, 2004; Pratt and Barros,

2007; Straub et al., 2010). Thus, class 1 is labeled as equilibrium DSD. However, the

diameter at which the second maximum is observed is slightly lower than diameter of

the maximum obtained by numerical simulation, around 2.6 mm (McFarquhar, 2004).

While class 1 shows a clear signature for equilibrium DSD, class 2 marks a transition

between dominant break-up, and equilibrium DSD, and DSD where the break-up is

negligible with respect to other processes. Class 2 shows a sharp decrease in drop

concentration from the peak to 1.0 mm followed by relatively slower decrease between

1.0 and 2.0 mm and represents situations where break-up is present but it is not able to

modify the DSD up to the equilibrium. Classes 3 and 4 have the exponential slope from

peak distribution to the largest observables sizes where the slope is sharper in class 4

than in class 3. When the drop concentrations fell below 10-1 drops m-3 mm-1, the DSD

exhibits one or more discontinuities, mostly observed for drop diameters larger than 2

mm.

The figure 4.3 shows the mean plus and minus one standard deviation (STD) for each of

the six HS classes, always for IFLOODS dataset. The cloud envelop follows the trend

of the mean DSD and it is evident the changing in DSD shape from class 1 (figure

4.3a) to class 6 (figure 4.3f). The width of cloud envelop decreases both from class

1 to class 6 and from lower to larger diameters. When the drop concentration is very

low, about 1 m-3mm-1, the variance of distribution of number of drops corresponding

to those diameter classes is too high and the cloud envelop diverges.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Cloud envelop of mean DSD plus and minus one standard deviation (STD) for
each HS class for IFLOODS dataset. The number of samples size of each HS class is also
reported.
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IFLOODS(%) MC3E(%) Wallops(%) Alabama(%) LPVEX(%) IPHEX(%)

2DVD 2DVD 2DVD 2DVD 2DVD 2DVD

Class 1 4.5 7.0 2.4 2.2 0 5.3
Class 2 20.8 40.3 10.9 10.0 14.9 19.5
Class 3 53.2 43.3 38.7 45.3 52.3 45.4
Class 4 12.5 5.4 23.0 27.7 14.9 17.0
Class 5 5.3 2.3 11.3 6.4 6.0 8.4
Class 6 3.7 1.7 13.7 8.4 11.9 4.4

Table 4.1: Percentage of occurrence for each HS class for each 2DVD dataset.

Table 4.1 reports the percentage of samples in each HS class for each dataset.

The DSDs have positive HS values in a low percentage of cases marking the fact that

equilibrium DSD is rare in natural rain. The percent values depend on the season

of experiment and climatic characteristics of the regions. The maximum occurrence

for class 1 was 7%, based on 2DVD observations during MC3E, which was carried on

during the Spring of 2011. In contrast, class 1 2DVD observations were 2.4% at Wallops

where the experiment period was mainly during Autumn 2013 and Winter 2013-14. The

continental showers dominated the precipitation events during MC3E, while widespread

stratiform precipitation was mainly observed at Wallops.

Combining the classes 1 and 2, the percentage reaches up to about 47% during MC3E.

This remarks that break-up is more frequent during convective episodes, but only in

few cases (the 7% in class 1) is able to modify the DSD to reach the equilibrium DSD.

High percentage values were also observed both for classes 1 and 2 during IPHEX and

IFLOODS where the experiments focused on springtime flooding over orographic and

flat areas, respectively.

A further significant result is obtained from LPVEX that had the lowest occurrences for

class 1 (0%) and 2 (14.9%). This experiment was designed for observations of light rain
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(in fact the minutes with RR > 5 mmh-1 are very few) that frequently occurs during

Autumn at high latitudes and this is an additional proof that break-up takes place

and has effect on the DSD shape mostly during convective rain. The total absence of

equilibrium DSD confirms that this feature needs particular conditions to happen. In

Alabama, the percentages were relatively low for classes 1 and 2. Although the most of

the observations was during Spring and early Summer, just few convective rainfall was

included. The rain rate and reflectivity recorded were below 10 mmh-1 and 36 dBZ in

most cases.

4.1.2 SLOPE algorithm: Parsivel results

The SLOPE algorithm described above is designed for disdrometer observations where

the bin width is uniform. The performance of the detection algorithm was tested for

Parsivel observations where the bin width is not uniform and doubles from 0.129 mm

to 0.257 mm at around 1.3 mm. This particular diameter is within the range of size

bins used by the algorithm to compute the HS value.

Figure 4.4 reports the mean DSD for each HS class obtained from Parsivel data for

IFLOODS, IPHEX and Wallops. As just mentioned in the chapter 2 in the other three

site the Parsivel data available were collected with the older version of the instrument

and for this reason it was not considered, given the unsatisfactory performance of the

old version instrument).

The results are in a good agreement with the findings based on 2DVD: class 1 shows

the DSD equilibrium, particularly during IFLOODS and IPHEX, and class 2 can be

considered as the transition from break-up to non break-up. The other four classes

show an exponential trend of DSD with a different slope as function of class. The sim-

ilar features of DSD in each class between 2DVD and Parsivel reveals that the SLOPE
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Figure 4.4: Mean DSD for each HS class for each field campaign from Parsivel data.

algorithm is not limited to a disdrometer where the size bins is uniform. However,

percent occurrence for classes 1 and 2 was much less in Parsivel (table 4.2) than in

2DVD (table 4.1). The table 4.2 reports the percentage of occurrence for each HS

class for the three datasets where the Parsivel were installed. The difference is more

marked in the class 1 than class 2, while the percentage is more similar for classes from
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three to six. This is mainly due to the larger width of DSD bins, and indicates that

this instrument characteristic does not allow recognizing a large part of break-up cases.

IFLOODS(%) Wallops(%) IPHEX(%)

Parsivel Parsivel Parsivel

Class 1 0.8 1.0 1.0
Class 2 15.4 6.6 7.5
Class 3 58.7 41.2 40.7
Class 4 15.6 28.1 32.3
Class 5 4.5 11.4 9.6
Class 6 5.0 11.7 8.9

Table 4.2: Percentage of occurrence for each HS class for each Parsivel dataset.

4.2 Evaluation of gamma fit

The three parameters gamma distribution (Ulbrich, 1983) is widely used to parameter-

ize the DSD. The parametric form of gamma distribution is described by the equation

1.7 and the three parameters N0, µ and Λ can be estimated applying the method of

moments (section 1.4).

A visual comparison between figures 4.2 - 4.4 and figure 1.11 reveals that gamma

distribution is not the best model for the DSD of class 1 and 2. In this section is

evaluated the goodness of gamma distribution in fitting the measured DSDs as func-

tion of HS classes. An alternative parameterization for a better fit of the break-up

induced DSDs requires more in-depth analysis and will be object of future studies. For

this purpose both the method of moments M234 and M346 are used to estimate the

gamma parameters and the analysis is made only for the 2DVD data. The estimation
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of gamma distribution parameters (µ, λ and N0) with M234 is showed by equations 1.8

÷ 1.10. Similarly are obtained the parameters with M346. Since the results applying

the method M234 and M346 are very similar to each other, here will be shown only the

results obtained with M234 for IFLOODS dataset (the biggest one).

For this purpose, for each DSD selected by the SLOPE algorithm the corresponding

gamma distribution is estimated. The Pearson correlation coefficient is calculated be-

tween the experimental two-minutes averaged DSD and the gamma distribution to

determine the applicability of the gamma fit at six different HS classes. The correlation

as well as for the whole DSD spectrum, is also calculated for the size interval 1.0-2.6

mm, where the algorithm analyzes the slope of the DSD to assess the effects of the

break-up process on the DSD shape.

The Pearson correlation coefficient is defined as follows:

R =
σxy

σxσy

(4.1)

where R is the correlation coefficient, σxy is the covariance while σx and σy are the stan-

dard deviation of variable x and y. For the present analysis, the variables x and y are

the measured DSD and the corresponding estimated gamma distribution respectively.

Figure 4.5 shows the correlation coefficient between the experimental DSDs and the es-

timated gamma distributions for IFLOODS 2DVD dataset. The colors are in according

with the colors defined in figures 4.2 - 4.4 for each class. Considering the entire size

spectrum, majority of observations have correlations above 0.8 for classes 3-6, while the

correlations have a relatively wider range for classes 1-2 (figure 4.5a) showing lower

values with higher frequency. For the selected size interval 1.0-2.6 mm, the correlations

remained above 0.9 for classes 3-6, while class 1 exhibited evenly distributed correla-

tions between near 0 and 1 (figure 4.5b). This shows that gamma distribution often
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Figure 4.5: Pearson correlation coefficient between the experimental DSD and the correspond-
ing estimated gamma distribution for a) the whole DSD spectrum and b) for the 1.0-2.6 mm
diameter range, for IFLOODS dataset. The samples are ordinated from the lowest to the
highest HS value.

fails in approximating equilibrium DSDs. Class 2, which is the transition from equilib-

rium DSD to situations where the break-up process does not affect the DSD shape, has

both high correlations above 0.9 and between 0.6-0.9. This confirm that the gamma

distribution is not the best approximation also for the transition minutes, where the

break-up is present but the equilibrium DSD is not reached. It should be added that

the low correlation could be partially due to the differences between observed and fitted

spectra in small and large drop ends. Since M234 is used, the fitting in both ends of the

size spectrum may substantially deviate from the observations. Considering the whole

spectrum, if the observed spectrum has large number of small drops and/or presence

of large drops, the correlations are expected to be relatively low.

Also using the truncated gamma distribution instead untruncated gamma distribution,
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the trend of the correlation coefficient does not change.
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Figure 4.6: Pearson correlation coefficient between the experimental DSD and the correspond-
ing estimated gamma truncated distribution for a) the whole DSD spectrum and b) for the
1.0-2.6 mm diameter range, for IFLOODS dataset. The samples are ordinated from the lowest
to the highest HS value.

The differences between figures 4.5 and 4.6 are negligible and the observations made

for the figure 4.5 are valid for the figure 4.6 too.

4.3 Integral rain and DSD parameters

The parametric form of size distribution is often derived from disdrometer observations

without visually inspecting the DSD. In that regard, it is important to identify the

break-up based DSD parameters if they are different than non break-up DSD parame-

ters. This can be considered an additional indicator to distinguish between cases where

the equilibrium DSD can develop and cases where it is not possible. For this purpose,

the trend of several rain and size distribution parameters are studied as function of the
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HS classes. The table 4.3 reports the parameters used for this analysis.

Parameter Symbol Units Definition

Mean mass diameter Dmass mm Dmass =
M4

M3

Maximum diameter Dmax mm /

X Factor X / X =
Dmax

Dmass

Total concentration of drops NT m-3 NT =
∑n

i=1 Ni(D)

Normalized intercept parameter with

respect to NT

N∗

T m-3mm-1 N∗

T =
NT

Dmass

Normalized intercept parameter with

respect to LWC
NW m-3mm-1 NW =

256 · LWC

πρwDmass

Rain Rate RR mmh-1 RR =
π

6
3.6 · 106

∫ Dmax

Dmin
v(D)D3N(D)dD

Reflectivity Z dB Z =
∫ Dmax

Dmin
D6N(D)dD

Liquid Water Content LWC g m-3 LWC =
π

6
ρw

∫ Dmax

Dmin
D3N(D)dD

Horizontal Reflectivity ZH dB ZH =
∫ Dmax

Dmin
SHD

6N(D)dD

Differential Reflectivity Zdr dB Zdr = 10log
ZH

ZV

Difference between the horizontal and

vertical phase shift
Kdp deg km-1 Kdp =

180

λ
W (1− rm)

Table 4.3: Integral rain and DSD parameters.

The trend of selected parameters will be shown in the figure 4.7 for 2DVD IFLOODS

dataset.
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Figure 4.7: Distribution of the selected DSD parameters as function of the samples number,
ranked from the lowest to the highest HS value. a) Dmass, b) Dmax, c) log(NT

*), d) log(NW),
e) RR and f) Z.
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The analysis has been carried out also for the other 2DVD datasets but since the

findings are very similar will not be shown. The distribution of Dmass, Dmax and NT
*

and NW has different characteristics at different classes (figures 4.7a- 4.7d). Dmass and

Dmax decreased from class 1 to class 6, while the reverse was true for logarithmic values

of NT
* and NW. The low values of Dmax and Dmass indicate narrow DSD, while high

values of NT
* and NW reveal large concentration of small and midsize drops for classes

5 and 6. This is in agreement with the mean DSD in figures 4.2 and 4.4. The increase

in Dmax and Dmass is more gradual from class 3 to class 1 coinciding with relatively

small changes in the width of the size distribution in figures 4.2 and 4.4. The decrease

in NT
* and NW is also gradual from class 3 to class 1. The trend is confirmed also by

the mean and standard deviation of these parameters that both decrease from class 1

to 6 for Dmass and Dmax while increase for NT
* and NW.

Rain rate, which is the moment 3.67 of the DSD, does not show any trend from class

1 to class 6 (figure 4.7e) unlike the other parameters. Reflectivity, which is the sixth

moment of DSD decreased from class 1 to class 6 (figure 4.7f). Classes 2 and 3 have

larger sample sizes and show wide variations in both rain rate and reflectivity with

the highest values of both mean and standard deviation. Class 1 has relatively smaller

sample size and was bounded between 5 and 30 mmh-1 for rain rate and between 36 and

51 dBZ for reflectivity. Overall, none of the computed DSD parameters, if considered

alone, can be used to identify equilibrium or break-up dominated DSD with respect to

DSD where break-up is negligible, but they can be additional indicators to screen out

situations where collisional break-up does not affect the DSD shape (i.e. no modification

of the DSD when the reflectivity is lower than 36 dBZ). Consequently, even if a threshold

could be set for each parameter, this is not a sufficient condition to detect equilibrium

(or dominated break-up minutes) but the SLOPE algorithm has to be applied for this

aim.
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Figure 4.8: Distribution of the selected DSD parameters for radar application. a) ZH, b) Zdr,
c) Kdp.

Very similar findings are obtained by the radar DSD parameters. The trend of ZH

parameter (figure 4.8a) shows no difference with respect to the Z trend (figure 4.7f),

while no more informations can be obtained by Zdr and Kdp analysis. Zdr (figure 4.8b)
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presents very similar values for all classes and also the standard deviation for classes 1-3

are comparable to each other. Lower mean and standard deviation values are obtained

for classes 5-6. Kdp (figure 4.8c) does not show any particular trend and does not give

an additional contribute to the analysis.





Chapter 5

Small scale DSD spatial variability

Insight into the spatial variability of the DSD, and hence rainfall, is of primary im-

portance for various environmental applications like cloud/precipitation microphysical

studies, numerical weather modeling, rainfall estimation using remote sensing data,

hydrological applications, etc.. Moreover, extreme spatial variability of rainfall is

a source of uncertainty in evaluation of remote sensing rainfall estimates across the

pixel/footprint. The spatial variability of the DSD can be investigated using multiple

synchronized measurements distributed in the same area. Although different works are

based on rain gauges network (Ciach and Krajewski, 2006; Villarini et al., 2008; Tokay

and Öztürk, 2012 and many others), the difficulties in managing a disdrometer network

leads to a lack in the literature about the DSD spatial variability using disdrometer

data.

Very few papers are focused on the study of DSD spatial variability, but each one

presents some limitation either because the field measurement was not set up primar-

ily for this analysis type (Lee et al., 2009) or because the analysis regarded a limited

number of DSD parameters (Miriovsky et al., 2004; Jaffrain et at., 2012) or because

115
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the number of disdrometers available is limited.

In this context, the study carried out in this Thesis is the first result of systematic

study of DSD spatial variability using two disdrometer networks (Wallops and MC3E)

set up for this aim. The availability of twelve disdrometers (six 2DVD and six Parsivel)

at Wallops as well as the seven 2DVD installed at MC3E campaign resulted in two

unprecedented disdrometric dataset. In particular, the distance among the instruments

is comparable with a radar pixel or satellite footprint and covers different range of small

spatial scale.

In this chapter will be shown the method used to analyze the small scale spatial variabil-

ity of DSD parameters and the results obtained for the two field campaigns analyzed.

5.1 Methodology

To study the small scale DSD spatial variability, the three-parameter exponential model

has been selected (eq. 1.21) as presented in section 1.6, R(d) = R0e



−

d

d0





S0

where d

is the distance between two instruments , R(d) is the correlation as function of distance,

R0 is called ”nugget parameter” and represents the correlation between two collocated

instruments (with non zero distance but much lower then scale distance), d0 is the cor-

relation distance or scale parameter and s0 is the shape parameter.

The nugget R0 gives us information about the very small scale variability of the process

as well as the measurement errors (Journel and Huijbregts, 1978). It is ideally close

to one as two collocated instruments of the same type should agree to one another

with almost no variability between them and almost no measurement errors. For short

integration periods, the sampling errors play an important role resulting noticeable

variability between the collocated gauges. While 5-minute integration is considered the
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shortest reliable period for gauge rainfall, disdrometer derived rain parameters are often

presented at 1-minute integration. In that regard, the natural variability and sampling

differences result in noticeable variability in the derived parameters. Due to the un-

availability of two collocated disdrometers of the same type, for this work the nugget

parameter was assigned following previous studies based on rain gauge measurements

(Villarini et al., 2008; Tokay and Öztürk, 2012). The correlation distance d0 gives us

information about the distance at which the process decorrelates. Finally, for the shape

factor s0, controls the behavior of the correlation function at the small scale (near zero

distance). The shape parameter is relatively more dependent to the correlation dis-

tance and the root-mean square error between the observed and fitted correlations is

the measure of the goodness of the fit. If the shape and nugget parameters are one,

then equation 1.21 is the simple exponential model where d0 is the e-folding distance

(Ciach and Krajewski, 2006). Even when the shape parameter is not one, d0 is still the

e-folding distance when d is equal to d0.

To estimate the correlation distance and the shape parameter from the equation 1.21,

the following methodology has been used:

❼ Following previous studies (Villarini et al., 2008; Tokay and Öztürk, 2012), the

nugget parameter R0 are assigned three different values (0.90, 0.95 and 0.99).

❼ The correlation coefficient R(d)obs is calculated between paired measurements.

Since six and seven sites were operated at Wallops and MC3E respectively, a table

of 15 and 21 correlations (R(d)obs) at corresponding distances was constructed.

❼ Theoretical R(d)est is estimated for multiple couple of d0 and s0. For an initial

guess, a range of s0 is set from 0 to 2 at 0.01 interval and d0 is from 0 to 300 km

at 0.1 km interval.
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❼ The unknown parameters of d0 and s0 are determined minimizing the root-mean

square error (RMSE) between the R(d)obs and R(d)est.

Fifteen different DSD parameters were analyzed for the small scale spatial variability.

The parameters included the twelve described in table 4.3 more the shape parameters

µ(N∗

T ) and µ(NW ) of DSD gamma parameterization corresponding to the normalization

done with respect to total concentration (NT) and with respect to liquid water content

(LWC), and also the shape parameter with respect to σ(Dmass). The log(NT
*) and

log(NW) are also analyzed.

5.2 Results: Wallops dataset

5.2.1 Dataset description

The data analyzed were collected in the Wallops Flight Facility in the period indicated

in table 2.2. The distances among the disdrometers in the measuring field ranges from

0.5 to 2.3 km. This characteristic, together with the fact that in each measuring point

a 2DVD and a Parsivel were collocated, makes the dataset unique for the study of

DSD spatial variability. In fact, a measuring field (figure 5.1) comparable in size to a

satellite footprint or radar pixel,equipped with twelve disdrometers, is not present in

literature. It has to be specified that the footprint of TRMM-PR (Tropical Rainfall

Measuring Mission - Precipitation Radar) and GPM-DPR is approximately 5 km, a bit

larger than the Wallops measuring field.

The dataset size used for this study is different from the one described in table 2.2

because different criterion and threshold were used to select the data. Five different

rain/no-rain thresholds are used based on Ku- and Ka-band reflectivity and rain rate.

The choice of Ku- and Ka-band reflectivity threshold is related to the applicability of
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this study to the PR and DPR retrieval algorithm, on board the TRMM and GPM

mission, respectively. The preliminary observation of DPR indicates the minimum de-

tectable signal ranges between 12 dB and 15 dB for Ku-band and 12 dB for Ka-band

radars while the TRMM-PR minimum detectable signal at Ku-band is 18 dB.

Basing on these considerations, the dataset size according the different thresholds when

all twelve instruments (the six 2DVD and the six Parsivel) exceed the considered thresh-

old, results in:

❼ RR> 0.1 mmh-1 (447 minutes);

❼ ZKa
> 12 dB (445 minutes);

❼ ZKu
> 12 dB (434 minutes);

❼ ZKu
> 15 dB (380 minutes);

❼ ZKu
> 18 dB (278 minutes);

Throughout the experiment, the maximum RR was 13.1 and 18.4 mmh-1 for 2DVD

and Parsivel, respectively, while the mean RR was around 1.1 mmh-1 (exactly 1.09 and

1.15 mmh-1 respectively) for both instruments for rain/no-rain threshold of 0.1 mmh-1.

The minimum detectable RR was 0.11 and 0.08 mmh-1 for ZKa
>12 dB for 2DVD and

Parsivel, respectively, while 0.16 and 0.30 mmh-1 for ZKu
>18 dB. These reflectivity

limits corresponds to DPR and PR minimum detectable signals and resulted in missing

0.44% and 38% in rain occurrence and ∼0% and 19% in rainfall, respectively if 2DVD

data are considered. More restrained is the missing of rain occurrence considering 12-

and 15 db-ZKu
threshold with respect to 18 db-ZKu

threshold, resulting in 3% and 15%

respectively for 2DVD data.

To verify the consistency of collected data at the different thresholds, the Probability
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Figure 5.1: Measuring field at NASA Wallops Flight Facility.

Density Function (PDF) and Cumulative Density Function (CDF) are calculated for

each parameter both for 2DVD and Parsivel. PDF and CDF of DSD and rain parame-

ters provide an insight on the agreement between the 2DVD and Parsivel disdrometers.

Here, will be shown the PDF and CDF for RR, 12 dB-ZKa
and 18 dB-ZKu

threshold.

The two instruments show good agreement for the most of analyzed parameters. The

figure 5.2 depicts the PDF and CDF of RR, ZKa
and ZKu

for three different rain/no-rain

thresholds for 2DVD and Parsivel disdrometers. The probability distribution of these

parameters, as well as Z, ZH, LWC (not shown here) show negligible difference, with

a slightly higher percentage of lighter rainfall in 2DVD than in Parsivel (figures 5.2a-

5.2b). For the Ka- and Ku-band reflectivities, the distributions have similar trends in the

two disdrometers (figure 5.2c- 5.2f). At the same time, the distributions were shifted

toward higher reflectivities at Ku-band than at Ka-band reflectivity and rain/no-rain
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threshold for the same disdrometer. For all three parameters, the rain rate and Ka-

band based threshold resulted in similar distributions while Ku-band threshold showed

significantly less sensitivity to the lighter rain regardless of choice of disdrometers.

The probability distributions of the NW (figure 5.3) has noticeable differences between

Parsivel and 2DVD reflecting the differences in sensitivity to the small drops (figures

5.3a- 5.3b). In fact, NW skews toward higher values in 2DVD than in Parsivel indi-

cating the presence of more small drops in 2DVD than in Parsivel. The sensitivity to

the rain/no-rain thresholds is insignificant for both disdrometers as cumulative distri-

butions overlapped for all three thresholds. The same discussion applies to NT
* (not

shown here).

Dmass (figure 5.3), on the other hand, has similar probability distributions between the

disdrometers with a narrow distribution peaking 1.1-1.2 mm (figures 5.3c- 5.3d). A very

good agreement in distributions of rain rate and Dmass between the disdrometers reflects

the good agreement in mid-size section of the size spectra. The probability distribution

of Dmax (figure 5.3) of Parsivel presents a multi peak discontinuous trend, reflecting

its bin width effect, in contrast to continuous probability distribution in 2DVD (figures

5.3e- 5.3f). In fact, the bin width of Parsivel is 0.5 mm between 2.6 and 5.3 mm where

a large part of the Dmax is observed and 1 mm for larger Dmax values. At the same time,

cumulative distributions have a good agreement indicating both disdrometers were able

to sample Dmax adequately even though 2DVD has the twice the sampling area of Par-

sivel.

Analyzing the differences among the thresholds used, the PDF and CDF of RR and

12 dB-ZKa
threshold are very similar to each other, while 18 dB-ZKu

shows a different

trend. The difference is more marked for integral DSD parameters (RR, ZKa
, ZKu

, etc.)

with a greater contribution from the upper end of distribution both for 2DVD and

Parsivel (figure 5.2).
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Figure 5.2: PDF and CDF of DSD integral parameters: (a) and (b) RR, (c) and (d) ZKa
,

(e) and (f) ZKu
for 2DVD and Parsivel data, respectively.
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Figure 5.3: PDF and CDF of DSD parameters: (a) and (b) NW, (c) and (d) Dmass, (e) and
(f) Dmax for 2DVD and Parsivel data, respectively.
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The tables 5.1 and 5.2 show the statistical properties of PDF for all eighteen

analyzed parameters for 2DVD and Parsivel data, respectively. The numeric values of

threshold, as well the measurement units of parameters are not shown for a better visu-

alization. There is very good agreement between the two instruments and also between

the different rain/no-rain threshold. The low mean and also 90th values of RR and

reflectivity at different bands indicate the dominance of stratiform rain events during

the measurement period. The Dmass and Dmax values confirm the great contribution of

low- and mid-size drops to the measured DSDs. Both the instruments have appreciable

difference in estimation of the two intercept parameters, NT
* and NW where the former

has sensibly lower values than the latter.

5.2.2 Correlation distance analysis

The three-parameter exponential function is then calculated for each of the considered

parameters. In the figures 5.4 and 5.5 are shown, both for 2DVD and Parsivel,

the experimental correlation for each disdrometers pair (point for 2DVD and star for

Parsivel), the three-parameter exponential function (blu line for 2DVD and red line for

Parsivel) with d0, s0 and RMSE values for R0 = 0.99, since there is no difference in

results considering R0 = 0.90 or 0.95. The RMSE value reflects the goodness of the

experimental data fit by using the three-parameter exponential function. The results

refer to RR threshold.

An excellent agreement is evident in spatial variability of LWC, RR, and NT between

the 2DVD and Parsivel, as well as for NT
* and NW even if the functions slightly diverge

at the larger distances. Correlation distances of RR are 4.2 km and 4.5 km for Parsivel

and 2DVD, respectively, when nugget parameter is 0.99 (figure 5.4a) but do not change

for nugget parameters of 0.90 and 0.95.



5.2. Results: Wallops dataset 125

Mean STD Median 10th Percentile 90th Percentile

RR ZKa
ZKu

RR ZKa
ZKu

RR ZKa
ZKu

RR ZKa
ZKu

RR ZKa
ZKu

RR 1.10 1.10 1.43 0.94 0.94 1.02 0.87 0.87 1.11 0.33 0.35 0.68 2.16 2.16 2.65

LWC 0.07 0.07 0.09 0.05 0.05 0.06 0.06 0.06 0.07 0.02 0.02 0.05 0.14 0.14 0.17

ZKa
26.3 26.4 27.8 27.6 27.6 28.2 23.4 23.5 25.8 17.8 18.4 21.6 30.1 30.1 31.0

ZKu
26.8 26.8 28.4 33.1 33.1 34.0 21.9 22.0 24.3 16.7 17.3 20.3 29.9 29.9 31.0

ZH 26.4 26.5 28.0 32.6 32.6 33.6 22.3 22.4 24.7 17.0 17.6 20.7 29.6 29.6 30.7

Zdr 0.38 0.38 0.44 -11.35 -11.39 -10.83 0.29 0.30 0.35 0.14 0.15 0.17 0.68 0.68 0.76

Kdp 0.010 0.010 0.013 0.015 0.015 0.018 0.006 0.006 0.009 0.002 0.002 0.004 0.020 0.020 0.025

Dmass 1.11 1.13 1.20 0.30 0.29 0.31 1.05 1.06 1.15 0.79 0.82 0.86 1.52 1.52 1.59

Dmax 2.03 2.05 2.22 0.58 0.57 0.59 1.92 1.94 2.13 1.40 1.44 1.54 2.83 2.83 2.97

X 1.83 1.83 1.86 0.26 0.25 0.22 1.79 1.79 1.83 1.56 1.56 1.60 2.15 2.14 2.15

NT 447 442 526 407 410 467 340 331 400 141 130 181 818 814 950

NT
* 302 290 327 394 390 444 184 176 209 59 55 63 641 607 639

log(NT
*) 2.48 2.46 2.51 2.60 2.59 2.65 2.26 2.25 2.32 1.77 1.74 1.80 2.81 2.78 2.81

NW 6524 6215 6810 9294 9118 10219 3468 3253 3967 873 833 861 14770 13502 14378

log(NW) 3.81 3.79 3.83 3.97 3.96 4.01 3.54 3.51 3.60 2.94 2.92 2.93 4.17 4.13 4.16

µ(σDM) 5.7 5.8 5.4 3.5 3.5 3.4 5.2 5.2 4.7 1.7 1.7 1.7 10.6 10.6 10.1

µ(NT
*) 4.8 4.9 4.4 2.9 2.9 2.7 4.4 4.4 3.8 1.6 1.6 1.5 8.8 8.8 8.1

µ(NW) 5.2 5.1 4.7 3.4 3.3 3.1 4.5 4.5 4.1 1.5 1.5 1.5 9.9 9.6 9.0

Table 5.1: Mean, standard deviation (STD), median, 10th and 90th percentile of all 18 parameters for 2DVD data as function
of the rain/no-rain threshold. RR-0.1 mmh-1, ZKa

-12 dB, ZKu
-18 dB. For the units refers to table 4.3.
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Mean STD Median 10th Percentile 90th Percentile

RR ZKa
ZKu

RR ZKa
ZKu

RR ZKa
ZKu

RR ZKa
ZKu

RR ZKa
ZKu

RR 1.15 1.15 1.49 1.00 1.00 1.10 0.91 0.92 1.15 0.36 0.37 0.70 2.22 2.22 2.68

LWC 0.08 0.08 0.10 0.06 0.06 0.06 0.07 0.07 0.08 0.03 0.03 0.05 0.14 0.14 0.18

ZKa
26.2 26.2 27.6 27.8 27.8 28.4 23.2 23.2 25.5 17.3 17.9 21.1 29.9 29.9 30.9

ZKu
27.7 27.7 29.3 34.8 34.7 35.7 21.7 21.7 24.0 16.4 16.9 20.0 30.2 30.2 31.6

ZH 27.7 27.4 29.0 36.6 35.6 36.6 22.1 22.1 24.4 16.7 17.2 20.4 29.7 29.7 31.0

Zdr 0.39 0.40 0.47 -9.67 -10.39 -9.77 0.27 0.28 0.35 0.13 0.14 0.16 0.76 0.76 0.83

Kdp 0.011 0.011 0.015 0.022 0.021 0.026 0.006 0.006 0.010 0.002 0.002 0.005 0.022 0.022 0.028

Dmass 1.09 1.10 1.17 0.32 0.31 0.33 1.01 1.02 1.10 0.77 0.79 0.84 1.50 1.50 1.58

Dmax 1.96 1.98 2.15 0.63 0.61 0.64 1.93 1.93 1.93 1.42 1.42 1.42 2.83 2.83 2.83

X 1.80 1.80 1.85 0.27 0.27 0.25 1.77 1.77 1.82 1.51 1.51 1.56 2.16 2.15 2.18

NT 296 289 329 281 280 313 204 198 259 79 75 96 594 566 624

NT
* 951 920 1045 2271 2252 2582 319 306 328 80 76 81 2128 2006 2337

log(NT
*) 2.98 2.96 3.02 3.36 3.35 3.41 2.50 2.49 2.52 1.91 1.88 1.91 3.33 3.30 3.37

NW 7313 6873 7249 10915 10504 11478 3588 3379 3451 128 123 144 16790 15078 13930

log(NW) 3.86 3.84 3.86 4.04 4.02 4.06 3.55 3.53 3.54 2.11 2.09 2.16 4.23 4.18 4.14

µ(σDM) 5.4 5.4 4.8 4.2 4.2 4.0 4.6 4.5 3.9 0.7 0.7 0.6 11.2 11.2 10.4

µ(NT
*) 6.0 5.9 5.2 3.9 3.8 3.5 5.1 5.1 4.4 1.9 1.9 1.8 11.4 11.2 9.8

µ(NW) 5.0 4.9 4.4 4.0 3.9 3.7 4.0 4.0 3.4 0.8 0.7 0.7 10.5 10.2 9.3

Table 5.2: As for table 5.1 but for Parsivel data.

The shape parameters are just over 1 and the root mean square errors aere less
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than 0.1 indicating that the fit is very good. The excellent agreement in the spatial

variability of LWC (figure 5.4b), which correlation distance is comparable with which

obtained for RR, reflects in a very good agreement in mid-size drops measurements

between the two disdrometers types.

Previous studies on spatial variability rely on rain gauge measurements where the gauge

accumulations at different time integration periods were the input to derive the cor-

relations. Moreover, the configuration of the gauges with minimum and maximum

distances, gauge density, rainfall type, data collection and integration periods are dif-

ferent than in this study. As an example, Ciach and Krajewski (2006) found 7.7 km

correlation distance and the shape parameter of 1.1 at 1-minute accumulation in Cen-

tral Oklahoma, while Tokay and Ozturk (2012) found the correlation distance of 14 km

and shape parameter of 0.37 at 5-minute accumulation from Wallops Island measure-

ments. However, the correlation distances in the present work seem to be relatively

short for late fall winter type of precipitation, but the maximum separation distance

was relatively short and the data collected at high temporal scale of mm per hour.

For the reflectivity at Ka-, Ku- and S-band (Rayleigh), there is a worse agreement with

respect to RR and LWC (especially for Ku band). This reflects in a correlation distance

noticeably higher for 2DVD with respect to Parsivel (figures 5.4c- 5.4e), and generally

higher than RR and LWC, ranging between 10 and 17 Km about. The quantization

effect in Parsivel probably contributed to the relatively lower correlations. As high-

lighted, the bin width is over 0.5 mm between 2.6 mm and 5.3 mm and is over 1 mm

between 5.3 mm and 10 mm. The large drops contribute to the reflectivity and the

reflectivity calculated from the mid-size diameter may differ from that from the actual

diameter of the raindrop. For instance, a drop at 5.35 mm in diameter is registered as

5.66 mm raindrop and the difference for a single drop is more than 1 dB. The spatial

variability of Zdr has a mixture of higher and lower correlations at a given distance in
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Parsivel and the resultant fit is relatively poor where RMSE is just above 0.1 (figure

5.4f). The 2DVD, on the other hand, has a better fit and higher correlations.

Considering DSD parameters, the 2DVD based correlations are higher and uniformly

decreasing with the distance resulting in better fit for the exponential function than in

Parsivel for Dmass and Dmax (figures 5.5a- 5.5b). The quantization error is the major

error source in determining Dmax using Parsivel database. Both high and low correla-

tions were at distances comparable to each other resulting in higher RMSE values in

Parsivel based fitting. The correlation distance for Dmass is approximately 20 km, based

on 2DVD observations, while higher values are obtained for Dmax. On the other side,

the correlation distance obtained with Parsivel are lower for both parameters. Dmax

has also a value of the lowest for s0, both for 2DVD and Parsivel, while for the most of

parameters s0 ranges between 0.35 and 0.90 and exceeds the value of 1.0 for RR.

The same features are also evident in spatial variability of normalized intercept param-

eters NT
*, NW (figures 5.5c- 5.5d) and NT, log(NT

*) and log(NW) (not shown). The

correlations are high (>0.85) even at the largest separation distance and do not show a

significant decrease with distance when 2DVD database is used. This resulted in very

high correlation distances, even equal to the maximum value set for d0 for NT
*. The

correlation distances are 29 km and 27 km for NT
* and NW respectively when Parsivel

database is used. The shape parameters were less than 1 but quite different between

2DVD and Parsivel based fittings for both NT
* and NW. While RMSE values are low,

the fitting is better for 2DVD dataset.

The shape parameters that are derived from NT
* and NW based gamma distributions

showed significant differences between them and between the two disdrometer database.

The correlation distances are noticeably lower in µ(NW) than in µ(NT
*) and in Parsivel

database than in 2DVD database (figures 5.5e- 5.5f). Fits are good with low RMSE

values for both parameters and for both disdrometer database. Unlike normalized inter-
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cept parameters, the shape parameter is quite sensitive to the goodness of the gamma

fit to the observed DSD. The shape parameters show the lowest s0 values and this influ-

ences the trend of correlation function and, consequently, the obtained distance. Low

s0 values indicate low correlation at small distances and the corresponding relative high

correlation distances reveal a negligible change of correlation coefficient as function of

distance.

The correlations derived between the pair of measurements can be sensitive to the

sample size. In this study, the dataset included the minutes where all six 2DVD and

six Parsivel reporting rainfall for a given rain rate or minimum reflectivity thresholds.

Unfortunately, the malfunctioning of disdrometers, particularly 2DVDs, is occasionally

overlapped with non-rainy periods. It is rather difficult to separate the non-rainy peri-

ods from malfunction periods. This was the reason to include only the periods where all

disdrometers reported rainfall. As a result, the sample size became somewhat limited

especially if the interest is the spatial variability of a particular event.
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Figure 5.4: Three-parameter exponential function of 2DVD (blu line) and Parsivel (red
line) for: (a) RR, (b) LWC, (c) ZKa

, (d) ZKu
, (e) ZH and (f) Zdr.
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Figure 5.5: Three-parameter exponential function of 2DVD (blu line) and Parsivel (red
line) for: (a) Dmass, (b) Dmax, (c) Nt

*, (d) NW, (e) µ(NT
*) and (f) µ(NW).
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The figure 5.6 summarizes the correlation distance d0 ( 5.6a), the shape parameter

s0 ( 5.6b) and the RMSE ( 5.6c) for all the 18 DSD and integral parameters that are

derived from 2DVD (blue point) and Parsivel (red star) database.
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Figure 5.6: The correlation distance d0 (a), the shape parameter s0 (b) and the RMSE (c) for all
DSD parameters for 2DVD (blue point) and Parsivel (red star).
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Both DSD and rain parameters are function of observed size spectra but have different

sensitivity to the small, mid-size, and large drop size regimes. The comparison between

the two disdrometers at a size range that mainly contributes to a particular DSD and/or

rain parameters results in a very good agreement in d0 and s0 if the three-parameter

fit is successful. The figures ( 5.6b) and ( 5.6c) generally show lower values for 2DVD

with respect to Parsivel for both the parameters. The difference is more marked in the

RMSE (figure 5.6c). The RMSE is the measure of goodness of the three-parameter fit

and is relatively high when observed correlations of the two instruments at around the

same distances are substantially different. In general, the RMSE has low values, less

than 0.08 if Parsivel data are considered while the limit decreases to 0.05 with 2DVD

data, demonstrating the high confidence on the goodness of the fit. Comparing the

two instruments, the 2DVD has appreciably lower RMSE values than Parsivel for the

most of the parameters. This is reflected in generally higher correlation distance (figure

5.6a) obtained with 2DVD. For a DSD or rain parameter where correlations are high

and do not show significant decrease with distance, d0 was high. For instance, d0 is 300

km for NT
*, which is the upper limit of initial guess.

Figure 5.7 shows the sensitivity of correlation distance and shape parameter of

the exponential function to the choice of rain/no-rain threshold using 2DVD dataset.

The parameters of exponential function have much less sensitivity to the rain/no-rain

threshold than the disdrometer type. The dependence on the rain/no-rain threshold of

the parameters of the exponential function is slightly greater for Parsivel (not shown)

than 2DVD. The differences in rain/no-rain threshold do not alter the goodness of fit

significantly as RMSE remained the same for all rain/no-rain thresholds.

In addition to the rain/no-rain thresholds, the parameters of exponential function are

sensitive to many other factors and therefore it is difficult to compare the studies

of the spatial variability. Each experimental study offers a different characteristic of
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Figure 5.7: The correlation distance d0 (a), the shape parameter s0 (b) and the RMSE (c) for all
DSD parameters for 2DVD as function of threshold.

the spatial variability. The dense gauge network was the key to have an excellent

fit keeping RMSE very low. But disdrometers provide the spatial variability at high

temporal resolution. It is a direct measurement of DSD and therefore provides much

needed information beyond rain intensity within the domain of observations. Perhaps,

the number of disdrometers available is questionable for the robustness of parameters
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of exponential function.

5.2.3 Sensitivity Studies - Partial beam filling

In order to test the robustness of fit, an additional analysis is made. The analysis regards

the estimation of the three-parameter exponential function, only for RR parameter,

eliminating one of the stations (figure 5.8). This reduces the pair of correlations

from 15 to 10. At some instances, the elimination of station reduced the minimum

and maximum disdrometer separation distances. From theoretical point of view, this

analysis tries to replicate partial beam filling of satellite footprint or radar pixel from

DPR or a ground based radar. Both the correlation distance d0 and the shape parameter

s0 and the RMSE do not show any significant changes for the exclusion of one of the

sites and with respect to when all sites are considered. Moreover, spatial variability of

rainfall do not show any significant differences between 2DVD and Parsivel. Likely, the

dominance of frontal widespread rain during observation period and the condition of

all twelve instruments reporting rainfall are perhaps the two important factors for the

insensitivity of the correlation distances of RR to the exclusion of a site. Very similar

results are obtained considering both 12 dB-ZKa
and 15 dB-ZKu

. Each plot reports

the abbreviation of the instrument (”APU” for Parsivel and ”SN” for 2DVD) with the

serial number.
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Figure 5.8: The RR three-parameter exponential function of 2DVD (blu line) and Parsivel
(red line) excluding one couple of instruments: (a) APU11-SN36, (b) APU12-SN70, (c)
APU15-SN25, (d) APU16-SN38, (e) APU17-SN35 and (f) APU18-SN37.
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5.3 Results: MC3E dataset

5.3.1 Dataset description

The same analysis type made for Wallops data, has been made for MC3E data. Re-

ferring to the table 2.2 the data from seven 2DVD were collected during the MC3E

campaign, so that a comparison 2DVD-Parsivel was not possible. The distance among

the instruments ranges from 0.4 to 9.2 km, so that the measuring field is comparable

with a satellite footprint or radar pixel, as for Wallops dataset. The larger distances

among the instruments with respect to Wallops distances, allow to have an unprece-

dented comparison of the spatial variability at two different small scales using two

disdrometric datasets. The measuring field is described in figure 5.9. The MC3E

dataset for this study is obtained using the same rain/no-rain thresholds used for Wal-

lops dataset. In this case, the dataset size according the different thresholds when all

seven 2DVD exceed the considered threshold, results in:

❼ RR> 0.1 mmh-1 (592 minutes);

❼ ZKa
> 12 dB (589 minutes);

❼ ZKu
> 12 dB (574 minutes);

❼ ZKu
> 15 dB (516 minutes);

❼ ZKu
> 18 dB (396 minutes);

The same eighteen DSD parameters are analyzed in terms of three-parameter exponen-

tial function. Since was not possible to compare two different instruments types as for

Wallops (2DVD and Parsivel), the three-parameter exponential function was estimated
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Figure 5.9: Measuring field of MC3E campaign.

as function of nugget parameter R0, giving the same values of 0.90, 0.95 and 0.99 as-

signed also for Wallops analysis.

The mean RR is almost three times higher than Wallops dataset (ranges from 3.05 to

3.53 mmh-1 for 12 dB-ZKa
and 18 dB-ZKu

respectively), while the maximum RR mea-

sured was 92.8 mmh-1. The reflectivity thresholds result in missing the 0.51% and 33%

in rain occurrence, respectively, while the 1.3% and 23% of rain amount is missed.

The figure 5.10 shows the PDF and CDF for three different rain/no-rain threshold. In

general, there is an excellent agreement considering the RR and 12 dB-ZKa
threshold,

but a slight difference for 18 dB-ZKu
threshold for all the parameters considered. With

respect to the Wallops data, is evident the influence of season (late spring for MC3E

with respect to mainly fall-winter for Wallops) on the PDF and CDF. The distributions

of both DSD integral parameters (figures 5.10a- 5.10c) and DSD parameters (figures
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5.10d- 5.10f) move toward higher values. In particular, the Dmax and Dmass show a

greater contribution of larger diameter, that is reflected by a greater contribution of

higher values for RR and reflectivity at Ka and Ku band (significant contribution for

RR> 5mmh-1 and ZKa
-ZKu

> 35 dB. Less marked differences show the NW distribution

with respect to the 2DVD Wallops distribution.

The table 5.3 shows the statistical properties of PDF for all eighteen analyzed param-

eters for 2DVD data. As for the tables 5.1 and 5.2, the numeric values of threshold,

as well the measurement units of parameters are not shown for a better visualization.

Again, there is a very good agreement between the three rain/no-rain threshold. It

is evident the different precipitation type from MC3E data with respect to Wallops

data. The mean RR is almost three time higher than Wallops mean RR and also the

reflectivity at different bands is generally 10 dB higher. The contribution to the DSD

of larger drops is evident from Dmass and Dmax values, and also from Zdr values that are

about double of Zdr at Wallops. This reflects in lower values for NT
* and NW (also for

MC3E data maintains the marked difference between the two values).
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Figure 5.10: PDF and CDF of DSD integral parameters: (a) RR, (b) ZKa
, (c) ZKu

, (d)
NW, (e) Dmass and (f) Dmax for 2DVD data.
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Mean STD Median 10th Percentile 90th Percentile

RR ZKa
ZKu

RR ZKa
ZKu

RR ZKa
ZKu

RR ZKa
ZKu

RR ZKa
ZKu

RR 3.07 3.05 3.53 5.48 5.46 5.72 1.57 1.56 2.02 0.31 0.30 0.62 6.59 6.48 7.69

LWC 0.15 0.15 0.17 0.22 0.22 0.23 0.09 0.08 0.11 0.02 0.02 0.04 0.31 0.31 0.34

ZKa
32.7 32.6 33.3 35.2 35.2 35.2 29.2 29.3 30.3 20.2 20.6 24.8 36.4 36.4 37.3

ZKu
37.3 37.3 38.0 43.5 43.5 43.9 28.8 28.9 30.2 18.6 19.0 23.4 39.3 39.4 40.4

ZH 36.2 36.2 36.9 42.6 42.6 43.1 28.7 28.7 29.9 18.9 19.3 23.6 38.1 38.1 39.1

Zdr 0.74 0.75 0.82 -8.14 -8.16 -8.06 0.60 0.61 0.67 0.27 0.29 0.36 1.23 1.24 1.35

Zdp 0.051 0.051 0.059 0.144 0.144 0.156 0.017 0.017 0.022 0.002 0.002 0.006 0.104 0.103 0.122

Dmass 1.51 1.54 1.59 0.44 0.42 0.41 1.46 1.47 1.51 1.06 1.10 1.16 2.05 2.06 2.11

Dmax 2.73 2.77 2.94 0.88 0.86 0.81 2.63 2.65 2.79 1.76 1.83 2.10 3.80 3.82 3.95

X 1.81 1.80 1.86 0.26 0.26 0.24 1.79 1.78 1.84 1.49 1.48 1.56 2.13 2.13 2.16

NT 465 443 513 536 524 541 306 288 362 77 69 111 1015 974 1042

NT
* 193 169 190 269 225 226 107 99 125 26 22 33 447 385 410

log(NT
*) 2.29 2.23 2.28 2.43 2.35 2.35 2.03 2.00 2.10 1.41 1.35 1.52 2.65 2.59 2.61

NW 3087 2490 2671 5835 3992 3931 1439 1332 1574 373 332 439 6482 5359 5845

log(NW) 3.49 3.40 3.43 3.77 3.60 3.59 3.16 3.12 3.20 2.57 2.52 2.64 3.81 3.73 3.77

µ(σDM) 5.0 4.9 4.3 3.7 3.7 3.3 4.1 4.1 3.5 1.1 1.1 1.0 10.1 10.0 8.7

µ(NT
*) 3.9 3.8 3.2 3.1 3.0 2.6 3.1 3.1 2.7 0.9 0.9 0.7 7.9 7.6 6.4

µ(NW) 4.5 4.5 3.9 3.4 3.3 2.9 3.8 3.7 3.2 1.1 1.1 0.9 8.9 8.8 7.6

Table 5.3: As for table 5.1 but for 2DVD data of MC3E dataset.
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5.3.2 Correlation distance analysis

The three-parameter exponential function has been calculated as function of R0. The

figures 5.11 and 5.12 show the correlation function for the selected DSD parameters

calculated for three R0 values for RR threshold. The difference among the three ob-

tained functions is negligible and they are mostly overlapping. The RR correlation

distance (figure 5.11a) is around 3.6 km for R0 = 0.99 (ranges from 3.6 to 4.0 km using

R0 = 0.99 and R0 = 0.90 respectively) and it is very similar to the LWC correlation

distance (figure 5.11b), but above all, the results are very close to those obtained from

Wallops data. The shape parameter is just over 1 also in this case both for RR and

LWC, while higher values are obtained for RMSE (close or just over 0.1).

Slightly higher values, ranging from 5.5 and 6.0 km about, are obtained for reflectivity

at Ka and Ku band (figures 5.11c- 5.11d). These values are generally lower than the

corresponding obtained from Wallops dataset. As for RR and LWC, the shape pa-

rameter is over 1 and the RMSE is greater than the corresponding RMSE for Wallops

dataset. Probably the greater contribution of larger drops has influence both on the

correlation distance and on the goodness of data fit, that anyway remains good.

Negligible differences in terms of correlation distance and RMSE, with respect to reflec-

tivity at Ka and Ku band, are found if ZH and Zdr parameters are considered. Although

the correlation distances are lower than the ones found for the Wallops dataset, the

DSD integral parameters are correlated with a radar pixel and satellite footprint.

Comparable correlation distance of RR, LWC, ZKa
and ZKu

are obtained for Dmass and

Dmax (figures 5.12a- 5.12b). The values range from 5 to 5.5 km and from 4.1 to 4.6 km

for Dmass and Dmax, respectively. The shape parameter is again close to 1, while the

RMSE reaches lower values, especially for Dmass. The correlation distances for these

parameter are sensibly lower than the founding for Wallops dataset.
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Figure 5.11: Three-parameter exponential function of 2DVD for: (a) RR, (b) LWC, (c)
ZKa

, (d) ZKu
, (e) ZH and (f) Zdr as function of R0.
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Higher correlation distance are obtained for the intercept parameters NT
* and NW

(figures 5.12c- 5.12d). However, the values are different to each other, about 37 km for

NT
* and 16 km for NW. The correlation values are high, if compared with the that of

the other parameters, but decrease more quickly with respect the Wallops data. The

values indicate correlation distance larger than a satellite footprint or radar pixel, but

generally smaller than correlation distance obtained for Wallops dataset. The difference

is more marked if the comparison is made with respect to Wallops 2DVD data than

Parsivel data. The shape parameter reaches low values, around 0.40 for both NT
* and

(d) NW, and non noticeable changing in RMSE are found. The same features can be

observed for log(NT
*) and log(NW) with high correlation distance but very low RMSE

values. Very low correlation distances are obtained for the gamma shape parameters

derived from NT
* and NW, that do not exceed 3.4 and 2.7 km for µ(NT

*) and µ(NW)

respectively, even if the fit is good (the RMSE moves from 0.07 for µ(NT
*) to 0.05

about for µ(NW).

Figure 5.13 summarizes the results obtained for d0, s0 and RMSE as function of nugget

parameters. For the most part of the analyzed parameters the correlation distance

is lower than 10 km (figure 5.13a), except for the intercept parameters that reach

correlation distance up to 40 km. Values of d0 are not very sensitive to the nugget

parameter. More sensitive to the nugget parameter is the shape parameter s0, generally

ranging between 0.40 and 1.20 (figure 5.13b). Both d0 and s0 values obtained for

Wallops and MC3E data do not show very marked differences to each other. The

difference becomes significant for RMSE, especially if the MC3E values (figure 5.13c)

are compared with the 2DVD Wallops values (figure 5.6c). The values range between

0.05 and 0.10 for the most of the parameters (figure 5.13c), with a peak at 1.20 for

RR, while 2DVD Wallops values are generally lower than 0.05 as well Parsivel values,

that only for few parameter exceed the 0.05 value (figure 5.6c).
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Anyway, the RMSE values show a good fit of the three exponential function with

real data.

Distance (km)
1 2 3 4 5 6 7 8 9 10

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
mass

 - 2DVD Samples: 592

r
0
=0.99  d

0
=5.0 km  s

0
=0.87  RMSE=0.055

r
0
=0.95  d

0
=5.2 km  s

0
=0.94  RMSE=0.055

r
0
=0.90  d

0
=5.5 km  s

0
=1.03  RMSE=0.055

(a)
Distance (km)

1 2 3 4 5 6 7 8 9 10

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
max

 - 2DVD Samples: 592

r
0
=0.99  d

0
=4.1 km  s

0
=0.85  RMSE=0.083

r
0
=0.95  d

0
=4.3 km  s

0
=0.92  RMSE=0.083

r
0
=0.90  d

0
=4.6 km  s

0
=1.00  RMSE=0.082

(b)

Distance (km)
1 2 3 4 5 6 7 8 9 10

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
T

*  - 2DVD Samples: 592

r
0
=0.99  d

0
=37.4 km  s

0
=0.39  RMSE=0.075

r
0
=0.95  d

0
=37.0 km  s

0
=0.44  RMSE=0.076

r
0
=0.90  d

0
=37.3 km  s

0
=0.51  RMSE=0.076

(c)
Distance (km)

1 2 3 4 5 6 7 8 9 10

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
W

 - 2DVD Samples: 592

r
0
=0.99  d

0
=16.1 km  s

0
=0.35  RMSE=0.088

r
0
=0.95  d

0
=17.4 km  s

0
=0.38  RMSE=0.088

r
0
=0.90  d

0
=19.3 km  s

0
=0.42  RMSE=0.089

(d)

Distance (km)
1 2 3 4 5 6 7 8 9 10

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 (N
T

* ) - 2DVD Samples: 571

r
0
=0.99  d

0
=2.9 km  s

0
=0.70  RMSE=0.067

r
0
=0.95  d

0
=3.1 km  s

0
=0.74  RMSE=0.068

r
0
=0.90  d

0
=3.4 km  s

0
=0.79  RMSE=0.068

(e)
Distance (km)

1 2 3 4 5 6 7 8 9 10

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 (N
W

) - 2DVD Samples: 551

r
0
=0.99  d

0
=2.1 km  s

0
=0.39  RMSE=0.052

r
0
=0.95  d

0
=2.3 km  s

0
=0.40  RMSE=0.052

r
0
=0.90  d

0
=2.7 km  s

0
=0.43  RMSE=0.053

(f)

Figure 5.12: Three-parameter exponential function of 2DVD for: (a) Dmass, (b) Dmax, (c)
NT

*, (d) NW, (e) µ(NT
*) and (f) µ(NT

*) as function of R0.
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The figure 5.14 shows the sensitivity of the parameters of the exponential function

to the choice of rain/no-rain thresholds. In general, the dependence on the choice of

rain/no-rain threshold is negligible for all three parameters of exponential function.

At ZKu
-18dB threshold, the RMSE shows a slight gap, toward both higher and lower

values, with respect the other two considered threshold. This does no affect the

goodness of fit in either of two cases.

It has to be highlighted that the obtained results, from two different small scale

networks with different number and also disdrometer types, show that most of the

DSD parameters are correlated within a radar pixel or satellite footprint. Moreover,

the dependence on the choice of rain/no-rain threshold is negligible.
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Figure 5.13: The correlation distance d0 (a), the shape parameter s0 (b) and the RMSE (c) for all
DSD parameters as function of nugget parameter R0.
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Figure 5.14: The correlation distance d0 (a), the shape parameter s0 (b) and the RMSE (c) for all DSD
parameters as function of nugget parameter threshold considered.
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5.3.3 Sensitivity Studies - Partial beam filling

As well as for Wallops data, the three-parameter exponential function has been es-

timated, only for RR parameter, excluding one of the seven 2DVD when all the

instruments exceed the considered threshold. In this case, the exclusion of a site

results in six correlation less. The seven three-parameter exponential function ob-

tained are split in the figures 5.15 and 5.16 for a better visualization. The exclusion

of one site do not involve any changes in the resulting parameters of the exponential

function. The correlation distance ranges always between 3 km and 4 km about for

R0 = 0.99 with the shape parameter just over 1 and RMSE around 0.1.
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Figure 5.15: The RR three-parameter exponential function excluding one of the seven 2DVD: (a)
SN25, (b) SN35, (c) SN36 and (d) SN37.
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Figure 5.16: The RR three-parameter exponential function excluding one of the seven 2DVD: (a) SN38,
(b) SN46 and (c) SN47.





Conclusions and Outlooks

The aim of this work is to describe microphysical characteristics of the structure of

natural rain. In particular, the vertical and horizontal, small-scale, variability of DSD

is analyzed, focusing on the effects of break-up occurrence, and its evolution to the

equilibrium DSD. Unprecedented disdrometric datasets, for the high number and the

high quality of instruments employed and also for geographic location (first DSD mea-

surement over 3000 m a.s.l.) have been used to pursue the objectives of this Thesis.

The vertical variability of DSD has been studied thanks to the development of spe-

cific algorithms able to detect and characterize both the DSD affected by break-up and

the equilibrium DSD. The algorithms are based on the analysis of the Doppler power

spectrum and on the analysis of the DSD. The results show a decrease of break-up

diameter with altitude, due to the reduction of air density that plays a critical role in

the energetic balance of the collision between two raindrops. The analysis indicates

that, regardless of the altitude, the collisional break-up occurs if the CKE exceeds 12.2

µJ. The results, together with the detailed analysis of some case study at high altitude

(over the Tibetan Plateau), show also that the dominance of the break-up process is

required to reach the equilibrium DSD.

The detection and the occurrence of equilibrium DSD and its variability at mid-latitude,

are then assessed by using the great amount of high quality disdrometric data avail-
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able from the datasets of GV program of NASA-GPM mission. The results show a

good agreement between the experimental equilibrium DSD and the equilibrium DSD

obtained by theoretical models. The analysis shows also that the equilibrium DSD is

mainly reached during convective rain and its dependence on season and latitude (no

equilibrium DSD is observed at high latitude - 60➦N). The occurrence of equilibrium

DSD is a rare event in natural rain (maximum 8% of selected minutes for MC3E data),

while an increase is observed if transition situations are considered.

The low correlation between the experimental DSDs and the gamma distribution evi-

dences that the gamma is not the best parametric form to fit the experimental equilib-

rium DSD. The rain and DSD parameters can be considered an additional indicators

to screen out the situations that can not reach the equilibrium DSD.

The horizontal DSD spatial variability is also deeply studied by analyzing the corre-

lation of rain and DSD parameters at small scale. The estimated correlation distance

shows that the most of the rain and DSD parameters are correlated within a radar pixel

or satellite footprint (generally the integral DSD parameters - RR, Z, LWC, etc. - are

less correlated than the non integral DSD parameters - Dmass, Dmax, NT
*, etc.). The

RMSE evidences a very good fit of the function used with respect the experimental

data, indicating a good reliability of data.

The results presented in this Thesis: 1) increase the knowledge of break-up phenomenon

and its effect on the DSD up to reach the equilibrium DSD, 2) can be used to improve

the parameterization form for DSD affected by break-up and equilibrium DSD occur-

rence, 3) can be also used in the modeling of cloud and precipitation mechanisms, 4)

give reliable indications about the spatial variability of the structure of precipitation

within a radar pixel and/or a satellite footprint, 5) have an immediate application to

the interpretation of remote sensing measurements to improve precipitation retrieval

from radar/satellite measurements, especially for the recently launched DPR in the
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frame of GPM mission.

The results obtained in this Thesis lead to the study of many other aspects that can

be investigated to better characterize the precipitation. The time evolution of the pre-

cipitation with particular emphasis to the time necessary to the break-up to modify

the DSD to reach equilibrium DSD can be investigated by using the algorithms pro-

posed here. A new parameterization of DSD affected by break-up and of equilibrium

DSD is necessary to improve the remote sensing of precipitation. Finally, a deeper

study of DSD spatial variability is needed to have more information about rain struc-

tures at small/medium spatial scales, by different techniques and datasets in different

season/location.
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