78 research outputs found

    Chemical cues and pheromones in the sea lamprey (Petromyzon marinus)

    Get PDF
    Chemical cues and pheromones guide decisions in organisms throughout the animal kingdom. The neurobiology, function, and evolution of olfaction are particularly well described in insects, and resulting concepts have driven novel approaches to pest control. However, aside from several exceptions, the olfactory biology of vertebrates remains poorly understood. One exception is the sea lamprey (Petromyzon marinus), which relies heavily upon olfaction during reproduction. Here, we provide a broad review of the chemical cues and pheromones used by the sea lamprey during reproduction, including overviews of the sea lamprey olfactory system, chemical cues and pheromones, and potential applications to population management. The critical role of olfaction in mediating the sea lamprey life cycle is evident by a well-developed olfactory system. Sea lamprey use chemical cues and pheromones to identify productive spawning habitat, coordinate spawning behaviors, and avoid risk. Manipulation of olfactory biology offers opportunities for management of populations in the Laurentian Great Lakes, where the sea lamprey is a destructive invader. We suggest that the sea lamprey is a broadly useful organism with which to study vertebrate olfaction because of its simple but well-developed olfactory organ, the dominant role of olfaction in guiding behaviors during reproduction, and the direct implications for vertebrate pest management

    Physiological and Behavioural Responses to Noxious Stimuli in the Atlantic Cod (Gadus morhua)

    Get PDF
    In the present study, our aim was to compare physiological and behavioural responses to different noxious stimuli to those of a standardized innocuous stimulus, to possibly identify aversive responses indicative of injury detection in a commercially important marine teleost fish, the Atlantic cod. Individual fish were administered with a noxious stimulus to the lip under short-term general anaesthesia (MS-222). The noxious treatments included injection of 0.1% or 2% acetic acid, 0.005% or 0.1% capsaicin, or piercing the lip with a commercial fishing hook. Counts of opercular beat rate (OBR) at 10, 30, 60, 90 and 120 min and observations of behaviour at 30 and 90 min post-treatment were compared with pre-treatment values and with control fish injected with physiological saline, an innocuous stimulus. Circulatory levels of physiological stress indicators were determined in all fish at 120 minutes post-treatment. All treatments evoked temporarily increased OBR that returned to pre-treatment levels at 60 minutes (saline, 0.005% capsaicin, hook), 90 minutes (0.1% acetic acid, 0.1% capsaicin), or 120 minutes (2% acetic acid), but with no significant differences from the control group at any time point. Fish treated with 0.1% and 2% acetic acid and 0.1% capsaicin displayed increased hovering close to the bottom of the aquaria and fish given 2% acetic acid and 0.1% capsaicin also displayed a reduced use of shelter. The only effect seen in hooked fish was brief episodes of lateral head shaking which were not seen pre-treatment or in the other groups, possibly reflecting a resiliency to tissue damage in the mouth area related to the tough nature of the Atlantic cod diet. There were no differences between groups in circulatory stress indicators two hours after treatment. This study provides novel data on behavioural indicators that could be used to assess potentially aversive events in Atlantic cod

    Physiological and Behavioural Responses to Noxious Stimuli in the Atlantic Cod (Gadus morhua)

    No full text
    In the present study, our aim was to compare physiological and behavioural responses to different noxious stimuli to those of a standardized innocuous stimulus, to possibly identify aversive responses indicative of injury detection in a commercially important marine teleost fish, the Atlantic cod. Individual fish were administered with a noxious stimulus to the lip under short-term general anaesthesia (MS-222). The noxious treatments included injection of 0.1% or 2% acetic acid, 0.005% or 0.1% capsaicin, or piercing the lip with a commercial fishing hook. Counts of opercular beat rate (OBR) at 10, 30, 60, 90 and 120 min and observations of behaviour at 30 and 90 min post-treatment were compared with pre-treatment values and with control fish injected with physiological saline, an innocuous stimulus. Circulatory levels of physiological stress indicators were determined in all fish at 120 minutes post-treatment. All treatments evoked temporarily increased OBR that returned to pre-treatment levels at 60 minutes (saline, 0.005% capsaicin, hook), 90 minutes (0.1% acetic acid, 0.1% capsaicin), or 120 minutes (2% acetic acid), but with no significant differences from the control group at any time point. Fish treated with 0.1% and 2% acetic acid and 0.1% capsaicin displayed increased hovering close to the bottom of the aquaria and fish given 2% acetic acid and 0.1% capsaicin also displayed a reduced use of shelter. The only effect seen in hooked fish was brief episodes of lateral head shaking which were not seen pre-treatment or in the other groups, possibly reflecting a resiliency to tissue damage in the mouth area related to the tough nature of the Atlantic cod diet. There were no differences between groups in circulatory stress indicators two hours after treatment. This study provides novel data on behavioural indicators that could be used to assess potentially aversive events in Atlantic cod

    Physiological and Behavioural Responses to Noxious Stimuli in the Atlantic Cod (Gadus morhua)

    Get PDF
    In the present study, our aim was to compare physiological and behavioural responses to different noxious stimuli to those of a standardized innocuous stimulus, to possibly identify aversive responses indicative of injury detection in a commercially important marine teleost fish, the Atlantic cod. Individual fish were administered with a noxious stimulus to the lip under short-term general anaesthesia (MS-222). The noxious treatments included injection of 0.1% or 2% acetic acid, 0.005% or 0.1% capsaicin, or piercing the lip with a commercial fishing hook. Counts of opercular beat rate (OBR) at 10, 30, 60, 90 and 120 min and observations of behaviour at 30 and 90 min post-treatment were compared with pre-treatment values and with control fish injected with physiological saline, an innocuous stimulus. Circulatory levels of physiological stress indicators were determined in all fish at 120 minutes post-treatment. All treatments evoked temporarily increased OBR that returned to pre-treatment levels at 60 minutes (saline, 0.005% capsaicin, hook), 90 minutes (0.1% acetic acid, 0.1% capsaicin), or 120 minutes (2% acetic acid), but with no significant differences from the control group at any time point. Fish treated with 0.1% and 2% acetic acid and 0.1% capsaicin displayed increased hovering close to the bottom of the aquaria and fish given 2% acetic acid and 0.1% capsaicin also displayed a reduced use of shelter. The only effect seen in hooked fish was brief episodes of lateral head shaking which were not seen pre-treatment or in the other groups, possibly reflecting a resiliency to tissue damage in the mouth area related to the tough nature of the Atlantic cod diet. There were no differences between groups in circulatory stress indicators two hours after treatment. This study provides novel data on behavioural indicators that could be used to assess potentially aversive events in Atlantic cod

    Chemical communication and mother-infant recognition

    Get PDF
    Fifty years after the term “pheromone” was coined by Peter Karlson and Martin Lüsher the search for these semiochemicals is still an elusive goal of chemical ecology and communication studies. Contrary to what appears in the popular press, the race is still on to capture and define human scents. Over the last several years, it became increasingly clear that pheromone-like chemical signals probably play a role in offspring identification and mother recognition. Recently, we analyzed the volatile compounds in sweat patch samples collected from the para-axillary and nipple-areola regions of women during pregnancy and after childbirth. We hypothesized that, at the time of birth and during the first weeks of life, the distinctive olfactory pattern of the para-axillary area is probably useful to newborns for recognizing and distinguishing their own mother, whereas the characteristic pattern of the nippleareola region is probably useful as a guide to nourishment
    corecore