47 research outputs found

    Results of Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial

    Get PDF
    BACKGROUND: Restenosis after percutaneous coronary intervention (PCI) is a major problem affecting 15% to 30% of patients after stent placement. No oral agent has shown a beneficial effect on restenosis or on associated major adverse cardiovascular events. In limited trials, the oral agent tranilast has been shown to decrease the frequency of angiographic restenosis after PCI. METHODS AND RESULTS: In this double-blind, randomized, placebo-controlled trial of tranilast (300 and 450 mg BID for 1 or 3 months), 11 484 patients were enrolled. Enrollment and drug were initiated within 4 hours after successful PCI of at least 1 vessel. The primary end point was the first occurrence of death, myocardial infarction, or ischemia-driven target vessel revascularization within 9 months and was 15.8% in the placebo group and 15.5% to 16.1% in the tranilast groups (P=0.77 to 0.81). Myocardial infarction was the only component of major adverse cardiovascular events to show some evidence of a reduction with tranilast (450 mg BID for 3 months): 1.1% versus 1.8% with placebo (P=0.061 for intent-to-treat population). The primary reason for not completing treatment was > or =1 hepatic laboratory test abnormality (11.4% versus 0.2% with placebo, P<0.01). In the angiographic substudy composed of 2018 patients, minimal lumen diameter (MLD) was measured by quantitative coronary angiography. At follow-up, MLD was 1.76+/-0.77 mm in the placebo group, which was not different from MLD in the tranilast groups (1.72 to 1.78+/-0.76 to 80 mm, P=0.49 to 0.89). In a subset of these patients (n=1107), intravascular ultrasound was performed at follow-up. Plaque volume was not different between the placebo and tranilast groups (39.3 versus 37.5 to 46.1 mm(3), respectively; P=0.16 to 0.72). CONCLUSIONS: Tranilast does not improve the quantitative measures of restenosis (angiographic and intravascular ultrasound) or its clinical sequelae

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Radionuclide techniques for valvular regurgitant index: comparison in patients with normal and depressed ventricular function

    No full text
    We compared contrast angiography with three techniques of quantitating valvular regurgitation from radionuclide ventriculograms in 70 patients: 45 with documented regurgitation graded 1-4+, and 25 without regurgitation. The radionuclide "regurgitant index" (ratio of L to R ventricular stroke counts) was measured from fixed end-diastolic regions of interest (method A), from separate end-diastolic and end-systolic regions of interest (method B), and from a "stroke-volume image" (method C). Sensitivities for detecting 1+ or more regurgitation were: method A = 57.8%, method B = 37.8% and method C = 62.2%. Sensitivities for detecting 2+ or more regurgitation were: method A = 74.2%, method B = 54.8%, and method C = 77.4%. All methods are greater than 97% specific. Interobserver coefficients of variability were: method A = 9.1%, method B = 19.2%, and method C = 5.4%. The sensitivity of each method was improved when left-ventricular ejection fractions were greater than 0.35. No method consistently differentiated between 2+, 3+, and 4+ valvular regurgitation
    corecore