157 research outputs found

    Giga-Gauss scale quasistatic magnetic field generation in an 'escargot' target

    Full text link
    A simple setup for the generation of ultra-intense quasistatic magnetic fields, based on the generation of electron currents with a predefined geometry in a curved 'escargot' target, is proposed and analysed. Particle-In-Cell simulations and qualitative estimates show that giga-Gauss scale magnetic fields may be achieved with existent laser facilities. The described mechanism of the strong magnetic field generation may be useful in a wide range of applications, from laboratory astrophysics to magnetized ICF schemes.Comment: Submitted to PRL. arXiv admin note: text overlap with arXiv:1409.524

    X-ray amplification from a Raman Free Electron Laser

    Get PDF
    accepted for publication in Phys. Rev. Lett. 03/11/2012We demonstrate that a mm-scale free electron laser can operate in the X-ray range, in the interaction between a moderately relativistic electron bunch, and a transverse high intensity optical lattice. The corrugated light-induced ponderomotive potential acts simultaneously as a guide and as a low-frequency wiggler, triggering stimulated Raman scattering. The gain law in the small signal regime is derived in a fluid approach, and confirmed from Particle-In-Cell simulations. We describe the nature of bunching, and discuss the saturation properties. The resulting all-optical Raman X-ray laser opens perspectives for ultra-compact coherent light sources up to the hard X-ray range

    γ-ray generation enhancement by the charge separation field in laser-target interaction in the radiation dominated regime

    Get PDF
    A new source of radiation can be created with a laser pulse of intensity 1023W/cm2 interacting with a slightly overdense plasma. Collective effects driven by the electrostatic field significantly enhance the synchrotron radiation. They impact on the laser energy repartition leading to a specific emission but also constitute a crucial element for the intense radiation production. They allow electrons to be accelerated over a length up to 10 laser wavelengths favoring emission of an intense radiation. It is shown that charge separation field depends on the ion mass and target thickness but also on laser polarization. These phenomena are studied with an one dimensional relativistic particle-in-cell code accounting for the classical radiation reaction force

    Fluctuating lattice Boltzmann

    Full text link
    The lattice Boltzmann algorithm efficiently simulates the Navier Stokes equation of isothermal fluid flow, but ignores thermal fluctuations of the fluid, important in mesoscopic flows. We show how to adapt the algorithm to include noise, satisfying a fluctuation-dissipation theorem (FDT) directly at lattice level: this gives correct fluctuations for mass and momentum densities, and for stresses, at all wavevectors kk. Unlike previous work, which recovers FDT only as k→0k\to 0, our algorithm offers full statistical mechanical consistency in mesoscale simulations of, e.g., fluctuating colloidal hydrodynamics.Comment: 7 pages, 3 figures, to appear in Europhysics Letter

    Symmetry-breaking and chaos in electron transport in semiconductor superlattices

    Get PDF
    We study the motion of electrons in a single miniband of a semiconductor superlattice driven by THz electric field polarized along the growth direction. We work in the semiclassical balance-equation model, including different elastic and inelastic scattering rates, and incorporating the self-consistent electric field generated by electron motion. We explore regions of complex dynamics, which can include chaotic behaviour and symmetry-breaking. We estimate the magnitudes of dc current and dc voltage that spontaneously appear in regions of broken-symmetry for parameters characteristic of modern semiconductor superlattices. This work complements PRL 80(1998)2669 [ cond-mat/9709026 ].Comment: 4 pages, 3 figures, RevTEX, EPS

    The analysis on the single particle model of CDW

    Full text link
    Gruner put forward a single particle model of charge-density wave, which is a typical nonlinear differential equation, and also a mathematical model of pendulum. This Letter analyzes the solution of equation by the rotated vector fields theory, providing the relation between the applied field E and the periodic solution, and the conclusion that the critical value of E for the periodic solution is fixed in the over-damped situation. With these conclusions, it derives the formulae of nonlinear conductivity, narrow-band noise, which are consistent with the empirical ones given by Fleming.Comment: This is a version with a physics focus, the part with a mathematical focus is submitted at arXiv:0807.328

    Rheology of Lamellar Liquid Crystals in Two and Three Dimensions: A Simulation Study

    Full text link
    We present large scale computer simulations of the nonlinear bulk rheology of lamellar phases (smectic liquid crystals) at moderate to large values of the shear rate (Peclet numbers 10-100), in both two and three dimensions. In two dimensions we find that modest shear rates align the system and stabilise an almost regular lamellar phase, but high shear rates induce the nucleation and proliferation of defects, which in steady state is balanced by the annihilation of defects of opposite sign. The critical shear rate at onset of this second regime is controlled by thermodynamic and kinetic parameters; we offer a scaling analysis that relates the critical shear rate to a critical "capillary number" involving those variables. Within the defect proliferation regime, the defects may be partially annealed by slowly decreasing the applied shear rate; this causes marked memory effects, and history-dependent rheology. Simulations in three dimensions show instead shear-induced ordering even at the highest shear rates studied here. This suggests that the critical shear rate shifts markedly upward on increasing dimensionality. This may in part reflect the reduced constraints on defect motion, allowing them to find and annihilate each other more easily. Residual edge defects in the 3D aligned state mostly point along the flow velocity, an orientation impossible in two dimensions.Comment: 18 pages, 12 figure

    Lattice Boltzmann Equation: Failure or Success?

    Full text link
    The lattice Boltzmann equation (LBE) is a microscopically-inspired method designed to solve macroscopic fluid dynamics problems. As a such, it lives at the interface between the microscopic (molecular) and macroscopic (continuum) worlds, hopefully capturing the best of the two. In this paper we shall discuss whether or not, after almost a decade since its inception, LBE has lived up to the initial expectations. Open problems and future research developments are also briefly outlined

    Pendulum limit, chaos and phase-locking in the dynamics of ac-driven semiconductor superlattices

    Get PDF
    We describe a limiting case when nonlinear dynamics of an ac-driven semiconductor superlattice in the miniband transport regime is governed by a periodically forced and damped pendulum. We find analytically the conditions for a transition to chaos and consider an influence of temperature on the effect. We also discuss fractional dc voltage states in a superlattice originating from phase-locked states of the pendulum.Comment: 8 pages, no figures. Version2 is strongly revised: new physics, more references. 3 appendixes of this Eprint are absent in the manuscript submitted to journa
    • …
    corecore