33 research outputs found

    Biogeochemical silica mass balances in Lake Michigan and Lake Superior

    Full text link
    Silica budgets for Lake Michigan and Lake Superior differ in several respects. Mass balance calculations for both lakes agree with previous studies in that permanent burial of biogenic silica in sediments may be only about 5% of the biogenic silica produced by diatoms. Because dissolution rates are large, good estimates of permanent burial of diatoms can not be obtained indirectly from the internal cycle of silica (silica uptake by diatoms and subsequent dissolution) but must be obtained from the sediment stratigraphy. The annual net production of biogenic silica in Lake Michigan requires 71% of the winter maximum silica reservoir which must be maintained primarily by internal cycling in this large lake whereas the comparable silica demand in Lake Superior is only 8.3%. The greater silica demand in Lake Michigan is the result of phosphorus enrichment which has increased diatom production. It is hypothesized that steady-state silica dynamics in Lake Michigan were disrupted by increased diatom production between 1955 and 1970 and that a new steady state based on silica-limited diatom production developed after 1970. Mass balance calculations for Lake Michigan show in contrast with previous work that the hypothesized water column silica depletion of 3.0 g · m −3 could have occurred even though 90% or more of the biogenic silica production is recycled.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42471/1/10533_2004_Article_BF02187199.pd

    Observation of inverse Compton emission from a long γ-ray burst.

    Get PDF
    Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1-6. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7-9. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10-6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs

    MAGIC very large zenith angle observations of the Crab Nebula up to 100 TeV

    Get PDF
    Aims. We measure the Crab Nebula gamma-ray spectral energy distribution in the 100 TeV energy domain and test the validity of existing leptonic emission models at these high energies.Methods. We used the novel very large zenith angle observations with the MAGIC telescope system to increase the collection area above 10 TeV. We also developed an auxiliary procedure of monitoring atmospheric transmission in order to assure proper calibration of the accumulated data. This employs recording optical images of the stellar field next to the source position, which provides a better than 10% accuracy for the transmission measurements.Results. We demonstrate that MAGIC very large zenith angle observations yield a collection area larger than a square kilometer. In only 56 h of observations, we detect the gamma-ray emission from the Crab Nebula up to 100 TeV, thus providing the highest energy measurement of this source to date with Imaging Atmospheric Cherenkov Telescopes. Comparing accumulated and archival MAGIC and Fermi/LAT data with some of the existing emission models, we find that none of them provides an accurate description of the 1 GeV to 100 TeV gamma-ray signal

    Observation of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 with H.E.S.S. and MAGIC in May 2016

    Get PDF
    The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behavior, and is one of only a few FSRQs detected at very high energy (VHE, E >100 GeV) -rays. VHE -ray observations with H.E.S.S. and MAGIC during late May and early June 2016 resulted in the detection of an unprecedented flare, which reveals for the first time VHE -ray intranight variability in this source. While a common variability timescale of 1.5 hr is found, there is a significant deviation near the end of the flare with a timescale of ∼ 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, curvature is detected in the VHE -ray spectrum of PKS 1510-089, which is fully explained through absorption by the extragalactic background light. Optical R-band observations with ATOM reveal a counterpart of the -ray flare, even though the detailed flux evolution differs from the VHE lightcurve. Interestingly, a steep flux decrease is observed at the same time as the cessation of the VHE flare. In the high energy (HE, E >100 MeV) -ray band only a moderate flux increase is observed with Fermi-LAT, while the HE -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the -ray spectrum indicates that the emission region is located outside of the BLR. Radio VLBI observations reveal a fast moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ∼ 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this correlation is indeed true, VHE rays have been produced far down the jet where turbulent plasma crosses a standing shock.Accepted manuscrip

    Elemental Composition of the Coral Pocillopora damicornis Exposed to Elevated Seawater Ammonium

    Get PDF
    The elemental composition (C, N, and P) of zooxanthellae and host tissue from the coral Pocillopora damicornis (Linnaeus) was determined after maintenance in flowing seawater with 20-uM and 50-M ammonium enrichments for periods of 2 to 8 weeks. Compared with ambient seawater controls, total zooxanthellar nitrogen (ug N cm-2 colony surface) increased four-fold during exposure to 20-uM ammonium. This resulted from increases in N content of zooxanthellae and in zooxanthellae population densities. C: N ratios of zooxanthellae decreased from 19.7 (±4.0) to 10.3 (±3.0), and N: P ratios increased from 21.4 (± 3.1) to 30.4 (± 2.2) after 8 weeks in 20 uM ammonium. Zooxanthellae from the 8-week 50-uM ammonium corals had values of 8.9 (±0.6) for C: Nand 40.4 (±2.3) for N: P. Coral animal C, N, and P content were not affected by ammonium-enriched seawater. The C :N ratio of coral animal tissue was 5.2 (±O.O), and the N: P ratio was 20.1 (±0.2) after 8 weeks in 20-uM ammonium seawater. There were no changes in host C: N, N: P, or C: P with ammonium enrichment. Thus, most of the N from the elevated seawater ammonium is retained by the zooxanthellae of P. damicornis, rather than by the animal tissue. Accordingly, sustained high concentrations of ammonium are likely to result in increased N storage by zooxanthellae and to affect the relative size of zooxanthellar to animal N pools
    corecore