1,925 research outputs found
Closed-loop approach to thermodynamics
We present the closed loop approach to linear nonequilibrium thermodynamics
considering a generic heat engine dissipatively connected to two temperature
baths. The system is usually quite generally characterized by two parameters:
the output power and the conversion efficiency , to which we add a
third one, the working frequency . We establish that a detailed
understanding of the effects of the dissipative coupling on the energy
conversion process, necessitates the knowledge of only two quantities: the
system's feedback factor and its open-loop gain , the product of
which, , characterizes the interplay between the efficiency, the
output power and the operating rate of the system. By placing thermodynamics
analysis on a higher level of abstraction, the feedback loop approach provides
a versatile and economical, hence a very efficient, tool for the study of
\emph{any} conversion engine operation for which a feedback factor may be
defined
Vector meson photoproduction studied in its radiative decay channel
We provide an analysis of vector meson photoproduction in the channel of the
vector meson decaying into a pseudoscalar meson plus a photon, i.e. . It is shown that non-trivial kinematic correlations arise from the
measurement of the angular distributions in the overall c.m. system
in comparison with those in the vector-meson-rest frame. In terms of the vector
meson density matrix elements, the implication of such kinematic correlations
in the measurement of polarization observables is discussed. For the
meson production, due to its relatively large branching ratios for
, additional events from this channel may enrich the
information about the reaction mechanism and improve the statistics of the
recent measurement of polarized beam asymmetries by the GRAAL Collaboration.
For , , and , we expect
that additional information about the spin structure of the vector meson
production vertex can be derived.Comment: Revtex, 14 pages, 2 eps figures; Version accepted by PR
High Fill-Out, Extreme Mass Ratio Overcontact Binary Systems. X. The new discovered binary XY Leonis Minoris
The new discovered short-period close binary star, XY LMi, was monitored
photometrically since 2006. It is shown that the light curves are typical
EW-type and show complete eclipses with an eclipse duration of about 80
minutes. By analyzing the complete B, V, R, and I light curves with the 2003
version of the W-D code, photometric solutions were determined. It is
discovered that XY LMi is a high fill-out, extreme mass ratio overcontact
binary system with a mass ratio of q=0.148 and a fill-out factor of f=74.1%,
suggesting that it is on the late evolutionary stage of late-type tidal-locked
binary stars. As observed in other overcontact binary stars, evidence for the
presence of two dark spots on both components are given. Based on our 19
epoches of eclipse times, it is found that the orbital period of the
overcontact binary is decreasing continuously at a rate of
dP/dt=-1.67\times10^{-7}\,days/year, which may be caused by the mass transfer
from the primary to the secondary or/and angular momentum loss via magnetic
stellar wind. The decrease of the orbital period may result in the increase of
the fill-out, and finally, it will evolve into a single rapid-rotation star
when the fluid surface reaching the outer critical Roche Lobe.Comment: 19 pages, 4 figures, 9 table
Modeling the Jovian subnebula: I - Thermodynamical conditions and migration of proto-satellites
We have developed an evolutionary turbulent model of the Jovian subnebula
consistent with the extended core accretion formation models of Jupiter
described by Alibert et al. (2005b) and derived from Alibert et al.
(2004,2005a). This model takes into account the vertical structure of the
subnebula, as well as the evolution of the surface density as given by an
-disk model and is used to calculate the thermodynamical conditions in
the subdisk, for different values of the viscosity parameter. We show that the
Jovian subnebula evolves in two different phases during its lifetime. In the
first phase, the subnebula is fed through its outer edge by the solar nebula as
long as it has not been dissipated. In the second phase, the solar nebula has
disappeared and the Jovian subdisk expands and gradually clears with time as
Jupiter accretes the remaining material. We also demonstrate that early
generations of satellites formed during the beginning of the first phase of the
subnebula cannot survive in this environment and fall onto the proto-Jupiter.
As a result, these bodies may contribute to the enrichment of Jupiter in heavy
elements. Moreover, migration calculations in the Jovian subnebula allow us to
follow the evolution of the ices/rocks ratios in the proto-satellites as a
function of their migration pathways. By a tempting to reproduce the distance
distribution of the Galilean satellites, as well as their ices/rocks ratios, we
obtain some constraints on the viscosity parameter of the Jovian subnebula.Comment: Accepted in Astronomy and Astrohpysic
Synapses as therapeutic targets for autism spectrum disorders: an international symposium held in Pavia on july 4th, 2014
New progresses into the molecular and cellular mechanisms of autism spectrum disorders (ASDs) have been discussed in 1 day international symposium held in Pavia (Italy) on July 4th, 2014 entitled “synapses as therapeutic targets for autism spectrum disorders” (satellite of the FENS Forum for Neuroscience, Milan, 2014). In particular, world experts in the field have highlighted how animal models of ASDs have greatly advanced our understanding of the molecular pathways involved in synaptic dysfunction leading sometimes to “synaptic clinical trials” in children. © 2014 Curatolo, Ben-Ari, Bozzi, Catania, D’Angelo, Mapelli, Oberman, Rosenmund and Cherubini
Two-photon diffraction and quantum lithography
We report a proof-of-principle experimental demonstration of quantum
lithography. Utilizing the entangled nature of a two-photon state, the
experimental results have bettered the classical diffraction limit by a factor
of two. This is a quantum mechanical two-photon phenomenon but not a violation
of the uncertainty principle.Comment: 5 pages, 5 figures Submitted to Physical Review Letter
Two-Photon Interferometry for High-Resolution Imaging
We discuss advantages of using non-classical states of light for two aspects
of optical imaging: creating of miniature images on photosensitive substrates,
which constitutes the foundation for optical lithography, and imaging of micro
objects. In both cases, the classical resolution limit given by the Rayleigh
criterion is approximately a half of the optical wavelength. It has been shown,
however, that by using multi-photon quantum states of the light field, and
multi-photon sensitive material or detector, this limit can be surpassed. We
give a rigorous quantum mechanical treatment of this problem, address some
particularly widespread misconceptions and discuss the requirements for turning
the research on quantum imaging into a practical technology.Comment: Presented at PQE 2001. To appear in Special Issue of Journal of
Modern Optic
Meson-baryon components in the states of the baryon decuplet
We apply an extension of the Weinberg compositeness condition on partial waves of L = 1 and resonant states to determine the weight of the meson-baryon component in the Delta(1232) resonance and the other members of the baryon decuplet. We obtain an appreciable weight of pi N in the Delta(1232) wave function, of the order of 60%, which looks more natural when one recalls that experiments on deep inelastic and Drell Yan give a fraction of pi N component of 34% for the nucleon. We also show that, as we go to higher energies in the members of the decuplet, the weights of the meson-baryon component decrease and they already show a dominant part for a genuine, non-meson-baryon, component in the wave function. We write a section to interpret the meaning of the Weinberg sum rule when it is extended to complex energies and another one for the case of an energy-dependent potential
- …