1,461 research outputs found

    The effect of scattering on the structure and SED of protoplanetary disks

    Full text link
    In this paper we investigate how the inclusion of scattering of the stellar radiation into a passive flaring disk model affects its structure and spectral energy distribution, and whether neglecting it could significantly decrease the model reliability. In order to address these questions we construct a detailed 1+1D vertical structure model in which the scattering properties of the dust can be varied. Models are presented with and without dust scattering, and for different albedos and phase functions. It is found that scattering has the effect of reducing the disk temperature at all heights, so that the disk "shrinks", i.e., the the density at all intermediate heights decreases. However, this effect in most cases is more than compensated by the increase of the total extinction (absorption + scattering) cross section, so that the surface scale height increases, and images in scattered light will see a slightly thicker disk. The integrated infrared emission decreases as the albedo increases, because an increasing part of the flux captured by the disk is reflected away instead of absorbed and reprocessed. The reduction of the infrared thermal emission of the disk is stronger at short wavelengths (near infrared) and practically negligible at millimeter wavelengths. For relatively low albedo (alb <~ 0.5), or for strongly forward-peaked scattering (g roughly >0.8), the infrared flux reduction is relatively small.Comment: Accepted for publication in Astronomy & Astrophysic

    A Spatially Resolved Inner Hole in the Disk around GM Aurigae

    Full text link
    We present 0.3 arcsec resolution observations of the disk around GM Aurigae with the Submillimeter Array (SMA) at a wavelength of 860 um and with the Plateau de Bure Interferometer at a wavelength of 1.3 mm. These observations probe the distribution of disk material on spatial scales commensurate with the size of the inner hole predicted by models of the spectral energy distribution. The data clearly indicate a sharp decrease in millimeter optical depth at the disk center, consistent with a deficit of material at distances less than ~20 AU from the star. We refine the accretion disk model of Calvet et al. (2005) based on the unresolved spectral energy distribution (SED) and demonstrate that it reproduces well the spatially resolved millimeter continuum data at both available wavelengths. We also present complementary SMA observations of CO J=3-2 and J=2-1 emission from the disk at 2" resolution. The observed CO morphology is consistent with the continuum model prediction, with two significant deviations: (1) the emission displays a larger CO J=3-2/J=2-1 line ratio than predicted, which may indicate additional heating of gas in the upper disk layers; and (2) the position angle of the kinematic rotation pattern differs by 11 +/- 2 degrees from that measured at smaller scales from the dust continuum, which may indicate the presence of a warp. We note that photoevaporation, grain growth, and binarity are unlikely mechanisms for inducing the observed sharp decrease in opacity or surface density at the disk center. The inner hole plausibly results from the dynamical influence of a planet on the disk material. Warping induced by a planet could also potentially explain the difference in position angle between the continuum and CO data sets.Comment: 12 pages, 6 figures, accepted for publication in Ap

    Empirical Constraints on Turbulence in Protoplanetary Accretion Disks

    Full text link
    We present arcsecond-scale Submillimeter Array observations of the CO(3-2) line emission from the disks around the young stars HD 163296 and TW Hya at a spectral resolution of 44 m/s. These observations probe below the ~100 m/s turbulent linewidth inferred from lower-resolution observations, and allow us to place constraints on the turbulent linewidth in the disk atmospheres. We reproduce the observed CO(3-2) emission using two physical models of disk structure: (1) a power-law temperature distribution with a tapered density distribution following a simple functional form for an evolving accretion disk, and (2) the radiative transfer models developed by D'Alessio et al. that can reproduce the dust emission probed by the spectral energy distribution. Both types of models yield a low upper limit on the turbulent linewidth (Doppler b-parameter) in the TW Hya system (<40 m/s), and a tentative (3-sigma) detection of a ~300 m/s turbulent linewidth in the upper layers of the HD 163296 disk. These correspond to roughly <10% and 40% of the sound speed at size scales commensurate with the resolution of the data. The derived linewidths imply a turbulent viscosity coefficient, alpha, of order 0.01 and provide observational support for theoretical predictions of subsonic turbulence in protoplanetary accretion disks.Comment: 18 pages, 9 figures, accepted for publication in Ap

    Vertical structure models of T Tauri and Herbig Ae/Be disks

    Get PDF
    In this paper we present detailed models of the vertical structure (temperature and density) of passive irradiated circumstellar disks around T Tauri and Herbig Ae/Be stars. In contrast to earlier work, we use full frequency- and angle-dependent radiative transfer instead of the usual moment equations. We find that this improvement of the radiative transfer has strong influence on the resulting vertical structure of the disk, with differences in temperature as large as 70 %. However, the spectral energy distribution (SED) is only mildly affected by this change. In fact, the SED compares reasonably well with that of improved versions of the Chiang & Goldreich (CG) model. This shows that the latter is a reasonable model for the SED, in spite of its simplicity. It also shows that from the SED alone, little can be learned about the vertical structure of a passive circumstellar disk. The molecular line emission from these disks is more sensitive to the vertical temperature and density structure, and we show as an example how the intensity and profiles of various CO lines depend on the adopted disk model. The models presented in this paper can also serve as the basis of theoretical studies of e.g. dust coagulation and settling in disks.Comment: 12 pages, 15 figures, accepted for publication in A&

    Polysaccharide Layer-by-Layer Coating for Polyimide-Based Neural Interfaces

    Get PDF
    Implantable flexible neural interfaces (IfNIs) are capable of directly modulating signals of the central and peripheral nervous system by stimulating or recording the action potential. Despite outstanding results in acute experiments on animals and humans, their long-term biocompatibility is hampered by the effects of foreign body reactions that worsen electrical performance and cause tissue damage. We report on the fabrication of a polysaccharide nanostructured thin film as a coating of polyimide (PI)-based IfNIs. The layer-by-layer technique was used to coat the PI surface due to its versatility and ease of manufacturing. Two different LbL deposition techniques were tested and compared: dip coating and spin coating. Morphological and physiochemical characterization showed the presence of a very smooth and nanostructured thin film coating on the PI surface that remarkably enhanced surface hydrophilicity with respect to the bare PI surface for both the deposition techniques. However, spin coating offered more control over the fabrication properties, with the possibility to tune the coating’s physiochemical and morphological properties. Overall, the proposed coating strategies allowed the deposition of a biocompatible nanostructured film onto the PI surface and could represent a valid tool to enhance long-term IfNI biocompatibility by improving tissue/electrode integration

    On the Evolution and Survival of Protoplanets Embedded in a Protoplanetary Disk

    Full text link
    We model the evolution of a Jupiter-mass protoplanet formed by the disk instability mechanism at various radial distances accounting for the presence of the disk. Using three different disk models, it is found that a newly-formed Jupiter-mass protoplanet at radial distance of \lesssim 5-10 AU cannot undergo a dynamical collapse and evolve further to become a gravitational bound planet. We therefore conclude that {\it giant planets, if formed by the gravitational instability mechanism, must form and remain at large radial distances during the first \sim 105106^5-10^6 years of their evolution}. The minimum radial distances in which protoplanets of 1 Saturn-mass, 3 and 5 Jupiter-mass protoplanets can evolve using a disk model with M˙=106MSun/yr\dot{M}=10^{-6} M_{Sun}/yr and α=102\alpha=10^{-2} are found to be 12, 9, and 7 AU, respectively. The effect of gas accretion on the planetary evolution of a Jupiter-mass protoplanet is also investigated. It is shown that gas accretion can shorten the pre-collapse timescale substantially. Our study suggests that the timescale of the pre-collapse stage does not only depend on the planetary mass, but is greatly affected by the presence of the disk and efficient gas accretion.Comment: 26 pages, 2 tables, 10 figures. Accepted for publication in Ap

    The Effects of UV Continuum and Lyman alpha Radiation on the Chemical Equilibrium of T Tauri Disks

    Full text link
    We show in this Letter that the spectral details of the FUV radiation fields have a large impact on the chemistry of protoplanetary disks surrounding T Tauri stars. We show that the strength of a realistic stellar FUV field is significantly lower than typically assumed in chemical calculations and that the radiation field is dominated by strong line emission, most notably Lyman alpha radiation. The effects of the strong Lyman alpha emission on the chemical equilibrium in protoplanetary disks has previously been unrecognized. We discuss the impact of this radiation on molecular observations in the context of a radiative transfer model that includes both direct attenuation and scattering. In particular, Lyman alpha radiation will directly dissociate water vapor and may contribute to the observed enhancements of CN/HCN in disks.Comment: 14 pages, 4 figures, accepted by ApJ Letter

    Use of Preputial Skin as Cutaneous Graft after Nevus Excision

    Get PDF
    We report a four-year-old boy with a nevus covering all the plantar side of his second finger on the left foot. He was also affected by congenital phimosis. Surgical excision of the nevus was indicated, but the skin defect would have been too large to be directly closed. The foreskin was taken as a full-thickness skin graft to cover the cutaneous defect of the finger. The graft intake was favourable and provided a functional repair with good aesthetic characteristic
    corecore