620 research outputs found

    Emotional agents at the square lattice

    Full text link
    We introduce and investigate by numerical simulations a number of models of emotional agents at the square lattice. Our models describe the most general features of emotions such as the spontaneous emotional arousal, emotional relaxation, and transfers of emotions between different agents. Group emotions in the considered models are periodically fluctuating between two opposite valency levels and as result the mean value of such group emotions is zero. The oscillations amplitude depends strongly on probability ps of the individual spontaneous arousal. For small values of relaxation times tau we observed a stochastic resonance, i.e. the signal to noise ratio SNR is maximal for a non-zero ps parameter. The amplitude increases with the probability p of local affective interactions while the mean oscillations period increases with the relaxation time tau and is only weakly dependent on other system parameters. Presence of emotional antenna can enhance positive or negative emotions and for the optimal transition probability the antenna can change agents emotions at longer distances. The stochastic resonance was also observed for the influence of emotions on task execution efficiency.Comment: 28 pages, 19 figures, 3 table

    Coevolution of Information Processing and Topology in Hierarchical Adaptive Random Boolean Networks

    Get PDF
    Random Boolean networks (RBNs) are frequently employed for modelling complex systems driven by information processing, e.g. for gene regulatory networks (GRNs). Here we propose a hierarchical adaptive RBN (HARBN) as a system consisting of distinct adaptive RBNs - subnetworks - connected by a set of permanent interlinks. Information measures and internal subnetworks topology of HARBN coevolve and reach steady-states that are specific for a given network structure. We investigate mean node information, mean edge information as well as a mean node degree as functions of model parameters and demonstrate HARBN's ability to describe complex hierarchical systems.Comment: 9 pages, 6 figure

    Information slows down hierarchy growth

    Full text link
    We consider models of growing multi-level systems wherein the growth process is driven by rules of tournament selection. A system can be conceived as an evolving tree with a new node being attached to a contestant node at the best hierarchy level (a level nearest to the tree root). The proposed evolution reflects limited information on system properties available to new nodes. It can also be expressed in terms of population dynamics. Two models are considered: a constant tournament (CT) model wherein the number of tournament participants is constant throughout system evolution, and a proportional tournament (PT) model where this number increases proportionally to the growing size of the system itself. The results of analytical calculations based on a rate equation fit well to numerical simulations for both models. In the CT model all hierarchy levels emerge but the birth time of a consecutive hierarchy level increases exponentially or faster for each new level. The number of nodes at the first hierarchy level grows logarithmically in time, while the size of the last, "worst" hierarchy level oscillates quasi log-periodically. In the PT model the occupations of the first two hierarchy levels increase linearly but worse hierarchy levels either do not emerge at all or appear only by chance in early stage of system evolution to further stop growing at all. The results allow to conclude that information available to each new node in tournament dynamics restrains the emergence of new hierarchy levels and that it is the absolute amount of information, not relative, which governs such behavior.Comment: LaTeX, 12 pages, 17 figures; revision after referee reports with significant change

    Negative emotions boost users activity at BBC Forum

    Full text link
    We present an empirical study of user activity in online BBC discussion forums, measured by the number of posts written by individual debaters and the average sentiment of these posts. Nearly 2.5 million posts from over 18 thousand users were investigated. Scale free distributions were observed for activity in individual discussion threads as well as for overall activity. The number of unique users in a thread normalized by the thread length decays with thread length, suggesting that thread life is sustained by mutual discussions rather than by independent comments. Automatic sentiment analysis shows that most posts contain negative emotions and the most active users in individual threads express predominantly negative sentiments. It follows that the average emotion of longer threads is more negative and that threads can be sustained by negative comments. An agent based computer simulation model has been used to reproduce several essential characteristics of the analyzed system. The model stresses the role of discussions between users, especially emotionally laden quarrels between supporters of opposite opinions, and represents many observed statistics of the forum.Comment: 29 pages, 6 figure

    An Agent-Based Model of Collective Emotions in Online Communities

    Full text link
    We develop a agent-based framework to model the emergence of collective emotions, which is applied to online communities. Agents individual emotions are described by their valence and arousal. Using the concept of Brownian agents, these variables change according to a stochastic dynamics, which also considers the feedback from online communication. Agents generate emotional information, which is stored and distributed in a field modeling the online medium. This field affects the emotional states of agents in a non-linear manner. We derive conditions for the emergence of collective emotions, observable in a bimodal valence distribution. Dependent on a saturated or a superlinear feedback between the information field and the agent's arousal, we further identify scenarios where collective emotions only appear once or in a repeated manner. The analytical results are illustrated by agent-based computer simulations. Our framework provides testable hypotheses about the emergence of collective emotions, which can be verified by data from online communities.Comment: European Physical Journal B (in press), version 2 with extended introduction, clarification

    Understanding fungal functional biodiversity during the mitigation of environmentally dispersed pentachlorophenol in cork oak forest soils

    Get PDF
    Pentachlorophenol (PCP) is globally dispersed and contamination of soil with this biocide adversely affects its functional biodiversity, particularly of fungi - key colonizers. Their functional role as a community is poorly understood, although a few pathways have been already elucidated in pure cultures. This constitutes here our main challenge - elucidate how fungi influence the pollutant mitigation processes in forest soils. Circumstantial evidence exists that cork oak forests in N. W. Tunisia - economically critical managed forests are likely to be contaminated with PCP, but the scientific evidence has previously been lacking. Our data illustrate significant forest contamination through the detection of undefined active sources of PCP. By solving the taxonomic diversity and the PCP-derived metabolomes of both the cultivable fungi and the fungal community, we demonstrate here that most strains (predominantly penicillia) participate in the pollutant biotic degradation. They form an array of degradation intermediates and by-products, including several hydroquinone, resorcinol and catechol derivatives, either chlorinated or not. The degradation pathway of the fungal community includes uncharacterized derivatives, e.g. tetrachloroguaiacol isomers. Our study highlights fungi key role in the mineralization and short lifetime of PCP in forest soils and provide novel tools to monitor its degradation in other fungi dominated food webs. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd

    Collective emotions online and their influence on community life

    Get PDF
    E-communities, social groups interacting online, have recently become an object of interdisciplinary research. As with face-to-face meetings, Internet exchanges may not only include factual information but also emotional information - how participants feel about the subject discussed or other group members. Emotions are known to be important in affecting interaction partners in offline communication in many ways. Could emotions in Internet exchanges affect others and systematically influence quantitative and qualitative aspects of the trajectory of e-communities? The development of automatic sentiment analysis has made large scale emotion detection and analysis possible using text messages collected from the web. It is not clear if emotions in e-communities primarily derive from individual group members' personalities or if they result from intra-group interactions, and whether they influence group activities. We show the collective character of affective phenomena on a large scale as observed in 4 million posts downloaded from Blogs, Digg and BBC forums. To test whether the emotions of a community member may influence the emotions of others, posts were grouped into clusters of messages with similar emotional valences. The frequency of long clusters was much higher than it would be if emotions occurred at random. Distributions for cluster lengths can be explained by preferential processes because conditional probabilities for consecutive messages grow as a power law with cluster length. For BBC forum threads, average discussion lengths were higher for larger values of absolute average emotional valence in the first ten comments and the average amount of emotion in messages fell during discussions. Our results prove that collective emotional states can be created and modulated via Internet communication and that emotional expressiveness is the fuel that sustains some e-communities.Comment: 23 pages including Supporting Information, accepted to PLoS ON
    corecore