93 research outputs found

    Non-autonomous 2-periodic Gumovski-Mira difference equations

    Get PDF
    We consider two types of non-autonomous 2-periodic Gumovski-Mira difference equations. We show that while the corresponding autonomous recurrences are conjugated, the behavior of the sequences generated by the 2-periodic ones differ dramatically: in one case the behavior of the sequences is simple (integrable) and in the other case it is much more complicated (chaotic). We also present a global study of the integrable case that includes which periods appear for the recurrence.Comment: 20 pages, 11 figure

    Emergence of Hemagglutinin Mutations during the Course of Influenza Infection

    Get PDF
    Influenza remains a significant cause of disease mortality. The ongoing threat of influenza infection is partly attributable to the emergence of new mutations in the influenza genome. Among the influenza viral gene products, the hemagglutinin (HA) glycoprotein plays a critical role in influenza pathogenesis, is the target for vaccines and accumulates new mutations that may alter the efficacy of immunization. To study the emergence of HA mutations during the course of infection, we employed a deep-targeted sequencing method. We used samples from 17 patients with active H1N1 or H3N2 influenza infections. These patients were not treated with antivirals. In addition, we had samples from five patients who were analyzed longitudinally. Thus, we determined the quantitative changes in the fractional representation of HA mutations during the course of infection. Across individuals in the study, a series of novel HA mutations directly altered the HA coding sequence were identified. Serial viral sampling revealed HA mutations that either were stable, expanded or were reduced in representation during the course of the infection. Overall, we demonstrated the emergence of unique mutations specific to an infected individual and temporal genetic variation during infection

    Serum RANKL, osteoprotegerin (OPG), and RANKL/OPG ratio in nephrotic children

    Get PDF
    Receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG) play key roles in the pathogenesis of glucocorticoid-induced osteoporosis (GIO). The aim of our study was to determine whether the cumulative glucocorticoid dose (CGCS) in children with idiopathic nephrotic syndrome (INS) has any effect on the concentration of serum RANKL and OPG and the RANKL/OPG ratio. The study population consisted of 90 children with INS, aged 3–20 years, who were treated with GCS. These children were divided into two groups according to the CGCS: low (L) <1 g/kg body weight (BW) and high (H) ≄1 g/kg BW, respectively. The control group (C) consisted of 70 healthy children. RANKL concentration was observed to be significantly higher and OPG significantly lower in INS children than in the reference group: 0.21 (range 0.01–1.36) versus 0.15 (0–1.42) pmol/l (p < 0.05), respectively, and 3.76 (1.01–7.25) versus 3.92 (2.39–10.23) pmol/l (p < 0.05), respectively. The RANKL/OPG ratio was significantly higher in INS children (p < 0.01). The concentration of RANKL, similar to the RANKL/OPG ratio, was significantly higher in Group H children than in Group L children: 0.46 (0.02–1.36 ) versus 0.19 (0.01–1.25) (p < 0.01) and 0.14 (0.01–0.71) versus 0.05 (0.002–0.37) (p < 0.01), respectively. The concentration of OPG was similar in both groups. There was a positive correlation between CGCS and the concentration of sRANKL as well as the RANKL/OPG ratio (in both cases r = 0.33, p < 0.05). Based on these results, we suggest that long-term exposure to GCS results in a dose-dependent increase in serum RANKL concentration and the RANKL/OPG ratio, but not in the level of serum OPG

    Gene expression profiling of mucinous ovarian tumors and comparison with upper and lower gastrointestinal tumors identifies markers associated with adverse outcomes.

    Get PDF
    PURPOSE: Advanced-stage mucinous ovarian carcinoma (MOC) has poor chemotherapy response and prognosis and lacks biomarkers to aid stage I adjuvant treatment. Differentiating primary MOC from gastrointestinal (GI) metastases to the ovary is also challenging due to phenotypic similarities. Clinicopathologic and gene-expression data were analyzed to identify prognostic and diagnostic features. EXPERIMENTAL DESIGN: Discovery analyses selected 19 genes with prognostic/diagnostic potential. Validation was performed through the Ovarian Tumor Tissue Analysis consortium and GI cancer biobanks comprising 604 patients with MOC (n = 333), mucinous borderline ovarian tumors (MBOT, n = 151), and upper GI (n = 65) and lower GI tumors (n = 55). RESULTS: Infiltrative pattern of invasion was associated with decreased overall survival (OS) within 2 years from diagnosis, compared with expansile pattern in stage I MOC [hazard ratio (HR), 2.77; 95% confidence interval (CI), 1.04–7.41, P = 0.042]. Increased expression of THBS2 and TAGLN was associated with shorter OS in MOC patients (HR, 1.25; 95% CI, 1.04–1.51, P = 0.016) and (HR, 1.21; 95% CI, 1.01–1.45, P = 0.043), respectively. ERBB2 (HER2) amplification or high mRNA expression was evident in 64 of 243 (26%) of MOCs, but only 8 of 243 (3%) were also infiltrative (4/39, 10%) or stage III/IV (4/31, 13%). CONCLUSIONS: An infiltrative growth pattern infers poor prognosis within 2 years from diagnosis and may help select stage I patients for adjuvant therapy. High expression of THBS2 and TAGLN in MOC confers an adverse prognosis and is upregulated in the infiltrative subtype, which warrants further investigation. Anti-HER2 therapy should be investigated in a subset of patients. MOC samples clustered with upper GI, yet markers to differentiate these entities remain elusive, suggesting similar underlying biology and shared treatment strategies

    p53 and ovarian carcinoma survival: an Ovarian Tumor Tissue Analysis consortium study

    Get PDF
    Our objective was to test whether p53 expression status is associated with survival for women diagnosed with the most common ovarian carcinoma histotypes (high-grade serous carcinoma [HGSC], endometrioid carcinoma [EC], and clear cell carcinoma [CCC]) using a large multi-institutional cohort from the Ovarian Tumor Tissue Analysis (OTTA) consortium. p53 expression was assessed on 6,678 cases represented on tissue microarrays from 25 participating OTTA study sites using a previously validated immunohistochemical (IHC) assay as a surrogate for the presence and functional effect of TP53 mutations. Three abnormal expression patterns (overexpression, complete absence, and cytoplasmic) and the normal (wild type) pattern were recorded. Survival analyses were performed by histotype. The frequency of abnormal p53 expression was 93.4% (4,630/4,957) in HGSC compared to 11.9% (116/973) in EC and 11.5% (86/748) in CCC. In HGSC, there were no differences in overall survival across the abnormal p53 expression patterns. However, in EC and CCC, abnormal p53 expression was associated with an increased risk of death for women diagnosed with EC in multivariate analysis compared to normal p53 as the reference (hazard ratio [HR] = 2.18, 95% confidence interval [CI] 1.36-3.47, p = 0.0011) and with CCC (HR = 1.57, 95% CI 1.11-2.22, p = 0.012). Abnormal p53 was also associated with shorter overall survival in The International Federation of Gynecology and Obstetrics stage I/II EC and CCC. Our study provides further evidence that functional groups of TP53 mutations assessed by abnormal surrogate p53 IHC patterns are not associated with survival in HGSC. In contrast, we validate that abnormal p53 IHC is a strong independent prognostic marker for EC and demonstrate for the first time an independent prognostic association of abnormal p53 IHC with overall survival in patients with CCC

    Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE).

    Get PDF
    PURPOSE: Gene expression-based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by nonstandardized methods, which are not applicable in a clinical setting. We sought to generate a clinical grade minimal gene set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. EXPERIMENTAL DESIGN: Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene expression data from 1,650 tumors. We applied resulting models to NanoString data on 3,829 HGSOCs from the Ovarian Tumor Tissue Analysis consortium. We further developed, confirmed, and validated a reduced, minimal gene set predictor, with methods suitable for a single-patient setting. RESULTS: Gene expression data were used to derive the predictor of high-grade serous ovarian carcinoma molecular subtype (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor-infiltrating lymphocytes, and outcome. The locked-down clinical grade PrOTYPE test includes a model with 55 genes that predicted gene expression subtype with >95% accuracy that was maintained in all analytic and biological validations. CONCLUSIONS: We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications.See related commentary by McMullen et al., p. 5271.Core funding for this project was provided by the National Institutes of Health (R01-CA172404, PI: S.J. Ramus; and R01-CA168758, PIs: J.A. Doherty and M.A.Rossing), the Canadian Institutes for Health Research (Proof-of-Principle I program, PIs: D.G.Huntsman and M.S. Anglesio), the United States Department of Defense Ovarian Cancer Research Program (OC110433, PI: D.D. Bowtell). A. Talhouk is funded through a Michael Smith Foundation for Health Research Scholar Award. M.S. Anglesio is funded through a Michael Smith Foundation for Health Research Scholar Award and the Janet D. Cottrelle Foundation Scholars program managed by the BC Cancer Foundation. J. George was partially supported by the NIH/National Cancer Institute award number P30CA034196. C. Wang was a Career Enhancement Awardee of the Mayo Clinic SPORE in Ovarian Cancer (P50 CA136393). D.G. Huntsman receives support from the Dr. Chew Wei Memorial Professorship in Gynecologic Oncology, and the Canada Research Chairs program (Research Chair in Molecular and Genomic Pathology). M. Widschwendter receives funding from the European Union’s Horizon 2020 European Research Council Programme, H2020 BRCA-ERC under Grant Agreement No. 742432 as well as the charity, The Eve Appeal (https://eveappeal.org.uk/), and support of the National Institute for Health Research (NIHR) and the University College London Hospitals (UCLH) Biomedical Research Centre. G.E. Konecny is supported by the Miriam and Sheldon Adelson Medical Research Foundation. B.Y. Karlan is funded by the American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124. H.R. Harris is 20 supported by the NIH/National Cancer Institute award number K22 CA193860. OVCARE (including the VAN study) receives support through the BC Cancer Foundation and The VGH+UBC Hospital Foundation (authors AT, BG, DGH, and MSA). The AOV study is supported by the Canadian Institutes of Health Research (MOP86727). The Gynaecological Oncology Biobank at Westmead, a member of the Australasian Biospecimen Network-Oncology group, was funded by the National Health and Medical Research Council Enabling Grants ID 310670 & ID 628903 and the Cancer Institute NSW Grants ID 12/RIG/1-17 & 15/RIG/1-16. The Australian Ovarian Cancer Study Group was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, The Cancer Council Victoria, Queensland Cancer Fund, The Cancer Council New South Wales, The Cancer Council South Australia, The Cancer Council Tasmania and The Cancer Foundation of Western Australia (Multi-State Applications 191, 211 and 182) and the National Health and Medical Research Council of Australia (NHMRC; ID199600; ID400413 and ID400281). BriTROC-1 was funded by Ovarian Cancer Action (to IAM and JDB, grant number 006) and supported by Cancer Research UK (grant numbers A15973, A15601, A18072, A17197, A19274 and A19694) and the National Institute for Health Research Cambridge and Imperial Biomedical Research Centres. Samples from the Mayo Clinic were collected and provided with support of P50 CA136393 (E.L.G., G.L.K, S.H.K, M.E.S.)

    Age at Menarche, Schooling, and Sexual Debut in Northern Malawi

    Get PDF
    Background: Age at sexual debut is a key behavioural indicator used in HIV behavioural surveillance. Early age at menarche may precipitate early sex through perceived readiness for sex, or through school drop-out, but this is rarely studied. We investigated trends and circumstances of sexual debut in relation to schooling and age at menarche.Methods and Findings: A cross-sectional sexual behaviour survey was conducted on all individuals age 15-59 within a demographic surveillance site in Karonga District, Malawi. Time trends were assessed using birth cohorts. Survival analysis was used to estimate the median age at menarche, sexual debut and first marriage. The 25(th) centile was used to define "early" sex, and analyses of risk factors for early sex were restricted to those who had reached that age, and were done using logistic regression. Of the 8232 women and 7338 men resident in the area, 88% and 78%, respectively, were seen, and, 94% and 92% of these were interviewed. The median reported age at first sex was 17.5 for women and 18.8 for men. For women, ages at menarche, sexual debut and first marriage did not differ by birth cohort. For men, age at sexual debut and first marriage decreased slightly in later birth cohorts. For both men and women increased schooling was associated with later sexual debut and a longer delay between sexual debut and first marriage, but the associations were stronger for women. Earlier age at menarche was strongly associated with earlier sexual debut and marriage and lower schooling levels. In women early sexual debut (= 16 (OR 0.04, 95%CI 0.02-0.05) compared to those with menarche at = 16. The association between age at menarche and schooling was partly explained by age at sexual debut. The association between age at menarche and early sex was not altered by adjusting for schooling.Conclusions: Women with early menarche start sex and marry early, leading to school drop-out. It is important to find ways to support those who reach menarche early to access the same opportunities as other young women

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    Get PDF
    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology
    • 

    corecore