1,016 research outputs found

    Needles in a haystack: screening and healthcare system evidence for homelessness

    Get PDF
    Effectiveness of screening for homelessness in a large healthcare system was evaluated in terms of successfully referring and connecting patients with appropriate prevention or intervention services. Screening and healthcare services data from nearly 6 million U.S. military veterans were analyzed. Veterans either screened positive for current or risk of housing instability, or negative for both. Current living situation was used to validate results of screening. Administrative evidence for homelessness-related services was significantly higher among positive-screen veterans who accepted a referral for services compared to those who declined. Screening for current or risk of homelessness led to earlier identification, which led to earlier and more extensive service engagement

    The ACIGA Data Analysis programme

    Full text link
    The Data Analysis programme of the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) was set up in 1998 by the first author to complement the then existing ACIGA programmes working on suspension systems, lasers and optics, and detector configurations. The ACIGA Data Analysis programme continues to contribute significantly in the field; we present an overview of our activities.Comment: 10 pages, 0 figures, accepted, Classical and Quantum Gravity, (Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 2003

    Foliar wheat diseases and cereal smuts and control of Pleiochaeta setosa in lupins.

    Get PDF
    Disease complexes in field screening trials. Glasshouse screening for resistance. Reinfection of barley loose smut. Barley loose smut – varietal susceptibility. Seed dressings for barley loose smut. Seed dressings for barley leaf stripe. Seed dressings for molybdenum application and fungicidal control of soil-borne flag smut. Chemical control of Pleiochaeta setosa in lupins. Effect of cereal stubble and seed dressing fungicide on brown leaf spot (P. setosa) in lupins. Stubble retention and Rovral for control of P. setosa in lupins. Fungicide sprays for control of P. setosa in lupins. Data summary for chemical trials

    Nacre Topography Produces Higher Crystallinity in Bone than Chemically Induced Osteogenesis

    Get PDF
    It is counter-intuitive that invertebrate shells can induce bone formation yet nacre, or mother of pearl, from marine shells is both osteoinductive and osteointegrative. Nacre is composed of aragonite (calcium carbonate) and induces production of vertebrate bone (calcium phosphate). Exploited by the Mayans for dental implants, this remarkable phenomenon has been confirmed in vitro and in vivo yet the characteristic of nacre that induces bone formation remains unknown. By isolating nacre topography from its inherent chemistry in the production of polycaprolactone (PCL) nacre replica, we show that, for mesenchymal stem cells, nacre topography is osteoinductive. Gene expression of specific bone marker proteins, osteopontin, osteocalcin, osteonectin and osterix are increased 10-, 2- 1.7- and 1.8-fold respectively when compared to planar PCL. Furthermore, we demonstrate that bone tissue that forms in response to the physical topographical features of nacre has higher crystallinity than bone formed in response to chemical cues with full width half maximum for PO4 3- Raman shift of 7.6±0.7 for mineral produced in response to nacre replica compared to a much broader 34.6±10.1 in response to standard osteoinductive medium. These differences in mineral product are underpinned by differences in cellular metabolism. This observation can be exploited in the design of bone therapies; a matter that is most pressing in light of a rapidly ageing human population. Aragonite and calcite are the two calcium carbonate polymorphs that constitute the shell of molluscan bivalves conferring strength and resilience due to the nano- and microstructural assembly of the overall architecture. A small percentage of the invertebrate shell constitute the organic matrix which is responsible for the intricate processes of nucleation, growth and inhibition of calcium carbonate crystals resulting in the well-defined shell structure. The discovery of fully integrated shell dental implants in Mayan skulls initiated a number of studies showing that nacre, or mother of pearl, the aragonite calcium carbonate polymorph derived from the pearl oyster Pinctada maxima has good osteointegrative properties in vivo. Further exploration of this phenomenon in human jaw reconstructions and sheep femur implants confirm the osteointegrative properties of invertebrate shells. In addition, nacre initiates osteogenic differentiation in mesenchymal stem cells (MSCs) in vitro. This observation has led to a number of studies in which nacre and its chemistry have been incorporated into the design of existing biomaterials to induce bone formation. MSCs can be induced into undergoing osteogenesis in vitro by the use of pre-formulated soluble factors in the culture media, chemically defined surfaces, substrate matrix elasticity and the surface topography of the substrate. These approaches induce osteogenesis when presented in isolation or in combination. When these cues are presented in combination, surface patterning plays an important role and topography can have a stronger influence on cell behaviour when presented with effective surface chemistries. In vertebrate and invertebrate systems, the main requisites for forming hard tissue or biomineral structures are calcium phosphate and calcium carbonate respectively, both of which are assembled in a variety of ways generating an incredible amount of structural diversity. This juxtaposition of phosphate and carbonate is described as the “Bone-Shell Divide”. It is intriguing that mammalian cells respond to mineral on the shell side of the Bone-Shell Divide and this begs questions: which feature of nacre elicits this response and, in transcending the Bone-Shell Divide, do MSCs produce bone of similar or superior characteristics to that induced by other means? Addressing these questions has important implications in tissue engineering and biomaterial applications, especially with regards to orthopaedic applications where critical sized defects in trauma and reconstructive surgery demand large areas of intact bone usually acquired by creating a secondary injury site. By isolating the topographical features of nacre from its inherent chemistry, we show that the osteoinductive properties of nacre arise from the patterning of the surface presented to MSCs. Importantly, separating nacre topography from its inherent chemistry enhances the osteogenic response. In this report we dissect out the contribution of topography to nacre bioactivit

    Role of vegetated coastal ecosystems as nitrogen and phosphorous filters and sinks in the coasts of Saudi Arabia

    Get PDF
    Vegetated coastal ecosystems along the Red Sea and Arabian Gulf coasts of Saudi Arabia thrive in an extremely arid and oligotrophic environment, with high seawater temperatures and salinity. Mangrove, seagrass and saltmarsh ecosystems have been shown to act as efficient sinks of sediment organic carbon, earning these vegetated ecosystems the moniker \u27blue carbon\u27 ecosystems. However, their role as nitrogen and phosphorus (N and P) sinks remains poorly understood. In this study, we examine the capacity of blue carbon ecosystems to trap and store nitrogen and phosphorous in their sediments in the central Red Sea and Arabian Gulf. We estimated the N and P stocks (in 0.2 m thick-sediments) and accumulation rates (for the last century based on 210Pb and for the last millennia based on 14C) in mangrove, seagrass and saltmarsh sediments from eight locations along the coast of Saudi Arabia (81 cores in total). The N and P stocks contained in the top 20 cm sediments ranged from 61 g N m-2 in Red Sea seagrass to 265 g N m-2 in the Gulf saltmarshes and from 70 g P m-2 in Red Sea seagrass meadows and mangroves to 58 g P m-2 in the Gulf saltmarshes. The short-term N and P accumulation rates ranged from 0.09 mg N cm-2 yr-1 in Red Sea seagrass to 0.38 mg N cm-2 yr-1 in Gulf mangrove, and from 0.027 mg P cm-2 yr-1 in the Gulf seagrass to 0.092 mg P cm-2 yr-1 in Red Sea mangroves. Short-term N and P accumulation rates were up to 10-fold higher than long-term accumulation rates, highlighting increasing sequestration of N and P over the past century, likely due to anthropogenic activities such as coastal development and wastewater inputs. © 2020 The Author(s). Published by IOP Publishing Ltd

    Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis

    Get PDF
    The rapidly intensifying process of ocean acidification (OA) due to anthropogenic CO2 is not only depleting carbonate ions necessary for calcification but also causing acidosis and disrupting internal pH homeostasis in several marine organisms. These negative consequences of OA on marine calcifiers, i.e. oyster species, have been very well documented in recent studies; however, the consequences of reduced or impaired calcification on the end-product, shells or skeletons, still remain one of the major research gaps. Shells produced by marine organisms under OA are expected to show signs of dissolution, disorganized microstructure and reduced mechanical properties. To bridge this knowledge gap and to test the above hypothesis, we investigated the effect of OA on juvenile shells of the commercially important oyster species, Magallana angulata, at ecologically and climatically relevant OA levels (using pH 8.1, 7.8, 7.5, 7.2). In lower pH conditions, a drop of shell hardness and stiffness was revealed by nanoindentation tests, while an evident porous internal microstructure was detected by scanning electron microscopy. Crystallographic orientation, on the other hand, showed no significant difference with decreasing pH using electron back-scattered diffraction (EBSD). These results indicate the porous internal microstructure may be the cause of the reduction in shell hardness and stiffness. The overall decrease of shell density observed from micro-computed tomography analysis indicates the porous internal microstructure may run through the shell, thus inevitably limiting the effectiveness of the shell's defensive function. This study shows the potential deterioration of oyster shells induced by OA, especially in their early life stage. This knowledge is critical to estimate the survival and production of edible oysters in the future ocean

    Motion Robust Magnetic Susceptibility and Field Inhomogeneity Estimation Using Regularized Image Restoration Techniques for fMRI

    Full text link
    In functional MRI, head motion may cause dynamic nonlinear field-inhomogeneity changes, especially with large out-of-plane rotations. This may lead to dynamic geometric distortion or blurring in the time series, which may reduce activation detection accuracy. The use of image registration to estimate dynamic field inhomogeneity maps from a static field map is not sufficient in the presence of such rotations. This paper introduces a retrospective approach to estimate magnetic susceptibility induced field maps of an object in motion, given a static susceptibility induced field map and the associated object motion parameters. It estimates a susceptibility map from a static field map using regularized image restoration techniques, and applies rigid body motion to the former. The dynamic field map is then computed using susceptibility voxel convolution. The method addresses field map changes due to out-of-plane rotations during time series acquisition and does not involve real time field map acquisitions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85944/1/Fessler233.pd

    Biomimetic oyster shell–replicated topography alters the behaviour of human skeletal stem cells

    Get PDF
    The regenerative potential of skeletal stem cells provides an attractive prospect to generate bone tissue needed for musculoskeletal reparation. A central issue remains efficacious, controlled cell differentiation strategies to aid progression of cell therapies to the clinic. The nacre surface from Pinctada maxima shells is known to enhance bone formation. However, to date, there is a paucity of information on the role of the topography of P. maxima surfaces, nacre and prism. To investigate this, nacre and prism topographical features were replicated onto polycaprolactone and skeletal stem cell behaviour on the surfaces studied. Skeletal stem cells on nacre surfaces exhibited an increase in cell area, increase in expression of osteogenic markers ALP (p

    The relationship between extreme inter-individual variation in macrophage gene expression and genetic susceptibility to inflammatory bowel disease

    Get PDF
    The differentiation of resident intestinal macrophages from blood monocytes depends upon signals from the macrophage colony-stimulating factor receptor (CSF1R). Analysis of genome-wide association studies (GWAS) indicates that dysregulation of macrophage differentiation and response to microorganisms contributes to susceptibility to chronic inflammatory bowel disease (IBD). Here, we analyzed transcriptomic variation in monocyte-derived macrophages (MDM) from affected and unaffected sib pairs/trios from 22 IBD families and 6 healthy controls. Transcriptional network analysis of the data revealed no overall or inter-sib distinction between affected and unaffected individuals in basal gene expression or the temporal response to lipopolysaccharide (LPS). However, the basal or LPS-inducible expression of individual genes varied independently by as much as 100-fold between subjects. Extreme independent variation in the expression of pairs of HLA-associated transcripts (HLA-B/C, HLA-A/F and HLA-DRB1/DRB5) in macrophages was associated with HLA genotype. Correlation analysis indicated the downstream impacts of variation in the immediate early response to LPS. For example, variation in early expression of IL1B was significantly associated with local SNV genotype and with subsequent peak expression of target genes including IL23A, CXCL1, CXCL3, CXCL8 and NLRP3. Similarly, variation in early IFNB1 expression was correlated with subsequent expression of IFN target genes. Our results support the view that gene-specific dysregulation in macrophage adaptation to the intestinal milieu is associated with genetic susceptibility to IBD.</p

    Disordered ultracold atomic gases in optical lattices: A case study of Fermi-Bose mixtures

    Get PDF
    We present a review of properties of ultracold atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. In the strong interacting limit and at very low temperatures, fermions form, together with bosons or bosonic holes, {\it composite fermions}. Composite fermions behave as a spinless interacting Fermi gas, and in the presence of local disorder they interact via random couplings and feel effective random local potential. This opens a wide variety of possibilities of realizing various kinds of ultracold quantum disordered systems. In this paper we review these possibilities, discuss the accessible quantum disordered phases, and methods for their detection. The discussed quantum phases include Fermi glasses, quantum spin glasses, "dirty" superfluids, disordered metallic phases, and phases involving quantum percolation.Comment: 29 pages and 11 figure
    • …
    corecore