1,131 research outputs found
Random Walks on a Fluctuating Lattice: A Renormalization Group Approach Applied in One Dimension
We study the problem of a random walk on a lattice in which bonds connecting
nearest neighbor sites open and close randomly in time, a situation often
encountered in fluctuating media. We present a simple renormalization group
technique to solve for the effective diffusive behavior at long times. For
one-dimensional lattices we obtain better quantitative agreement with
simulation data than earlier effective medium results. Our technique works in
principle in any dimension, although the amount of computation required rises
with dimensionality of the lattice.Comment: PostScript file including 2 figures, total 15 pages, 8 other figures
obtainable by mail from D.L. Stei
Exploring environmental factors in nursing workplaces that promote psychological resilience: Constructing a unified theoretical model
Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of psychological resilience as self-efficacy, coping and mindfulness, but did not examine environmental factors in the workplace that promote nurses' resilience. This unified theoretical framework was developed using a literary synthesis drawing on data from international studies and literature reviews on the nursing workforce in hospitals. The most frequent workplace environmental factors were identified, extracted and clustered in alignment with key constructs for psychological resilience. Six major organizational concepts emerged that related to a positive resilience-building workplace and formed the foundation of the theoretical model. Three concepts related to nursing staff support (professional, practice, personal) and three related to nursing staff development (professional, practice, personal) within the workplace environment. The unified theoretical model incorporates these concepts within the workplace context, linking to the nurse, and then impacting on personal resilience and workplace outcomes, and its use has the potential to increase staff retention and quality of patient care
Propylene Carbonate Reexamined: Mode-Coupling Scaling without Factorisation ?
The dynamic susceptibility of propylene carbonate in the moderately viscous
regime above is reinvestigated by incoherent neutron and
depolarised light scattering, and compared to dielectric loss and solvation
response. Depending on the strength of relaxation, a more or less
extended scaling regime is found. Mode-coupling fits yield consistently
and K, although different positions of the
susceptibility minimum indicate that not all observables have reached the
universal asymptotics
The evolution of vibrational excitations in glassy systems
The equations of the mode-coupling theory (MCT) for ideal liquid-glass
transitions are used for a discussion of the evolution of the
density-fluctuation spectra of glass-forming systems for frequencies within the
dynamical window between the band of high-frequency motion and the band of
low-frequency-structural-relaxation processes. It is shown that the strong
interaction between density fluctuations with microscopic wave length and the
arrested glass structure causes an anomalous-oscillation peak, which exhibits
the properties of the so-called boson peak. It produces an elastic modulus
which governs the hybridization of density fluctuations of mesoscopic wave
length with the boson-peak oscillations. This leads to the existence of
high-frequency sound with properties as found by X-ray-scattering spectroscopy
of glasses and glassy liquids. The results of the theory are demonstrated for a
model of the hard-sphere system. It is also derived that certain schematic MCT
models, whose spectra for the stiff-glass states can be expressed by elementary
formulas, provide reasonable approximations for the solutions of the general
MCT equations.Comment: 50 pages, 17 postscript files including 18 figures, to be published
in Phys. Rev.
Multiple-scattering effects on incoherent neutron scattering in glasses and viscous liquids
Incoherent neutron scattering experiments are simulated for simple dynamic
models: a glass (with a smooth distribution of harmonic vibrations) and a
viscous liquid (described by schematic mode-coupling equations). In most
situations multiple scattering has little influence upon spectral
distributions, but it completely distorts the wavenumber-dependent amplitudes.
This explains an anomaly observed in recent experiments
Political institutions and debt crises
This paper shows that political institutions matter in explaining defaults on external and domestic debt obligations. We explore a large number of political and macroeconomic variables using a non-parametric technique to predict safety from default. The advantage of this technique is that it is able to identify patterns in the data that are not captured in standard probit analysis. We find that political factors matter, and do so in different ways for democratic and non-democratic regimes, and for domestic and external debt. In democracies, a parliamentary system or sufficient checks and balances almost guarantee the absence of default on external debt when economic fundamentals or liquidity are sufficiently strong. In dictatorships, high stability and tenure play a similar role for default on domestic debt
Attitudes Towards and Limitations to ICT Use in Assisted and Independent Living Communities: Findings from a Specially-Designed Technological Intervention
Much literature has been devoted to theoretical explanations of the learning processes of older adults and to the methods of teaching best utilized in older populations. However, there has been less focus on the education of older adults who reside in assisted and independent living communities (AICs), especially with regards to information and communication technology (ICT) education. The purpose of this study is to determine whether participants\u27 attitudes and views towards computers and the Internet are affected as a result of participating in an eight-week training program designed to enhance computer and Internet use among older adults in such communities. Specifically, we examine if ICT education specially designed for AIC residents results in more positive attitudes towards ICTs and a perceived decrease in factors that may limit or prevent computer and Internet use. We discuss the implications of these results for enhancing the quality of life for older adults in AICs and make recommendations for those seeking to decrease digital inequality among older adults in these communities through their own ICT classes
Role of carbonate burial in Blue Carbon budgets
Calcium carbonates (CaCO3) often accumulate in mangrove and seagrass sediments. As CaCO3 production emits CO2, there is concern that this may partially offset the role of Blue Carbon ecosystems as CO2sinks through the burial of organic carbon (Corg). A global collection of data on inorganic carbon burial rates (Cinorg, 12% of CaCO3 mass) revealed global rates of 0.8âTgCinorgâyrâ1 and 15â62âTgCinorgâyrâ1 in mangrove and seagrass ecosystems, respectively. In seagrass, CaCO3burial may correspond to an offset of 30% of the net CO2 sequestration. However, a mass balance assessment highlights that the Cinorg burial is mainly supported by inputs from adjacent ecosystems rather than by local calcification, and that Blue Carbon ecosystems are sites of net CaCO3 dissolution. Hence, CaCO3 burial in Blue Carbon ecosystems contribute to seabed elevation and therefore buffers sea-level rise, without undermining their role as CO2 sinks
Disordered ultracold atomic gases in optical lattices: A case study of Fermi-Bose mixtures
We present a review of properties of ultracold atomic Fermi-Bose mixtures in
inhomogeneous and random optical lattices. In the strong interacting limit and
at very low temperatures, fermions form, together with bosons or bosonic holes,
{\it composite fermions}. Composite fermions behave as a spinless interacting
Fermi gas, and in the presence of local disorder they interact via random
couplings and feel effective random local potential. This opens a wide variety
of possibilities of realizing various kinds of ultracold quantum disordered
systems. In this paper we review these possibilities, discuss the accessible
quantum disordered phases, and methods for their detection. The discussed
quantum phases include Fermi glasses, quantum spin glasses, "dirty"
superfluids, disordered metallic phases, and phases involving quantum
percolation.Comment: 29 pages and 11 figure
- âŠ