1,508 research outputs found

    Johnson-Kendall-Roberts theory applied to living cells

    Get PDF
    Johnson-Kendall-Roberts (JKR) theory is an accurate model for strong adhesion energies of soft slightly deformable material. Little is known about the validity of this theory on complex systems such as living cells. We have addressed this problem using a depletion controlled cell adhesion and measured the force necessary to separate the cells with a micropipette technique. We show that the cytoskeleton can provide the cells with a 3D structure that is sufficiently elastic and has a sufficiently low deformability for JKR theory to be valid. When the cytoskeleton is disrupted, JKR theory is no longer applicable

    Radiative transition rates and collision strengths for Si II

    Full text link
    Aims. This work reports radiative transition rates and electron impact excitation collision strengths for levels of the 3s23p, 3s3p2, 3s24s, and 3s23d configurations of Siii. Methods. The radiative data were computed using the Thomas-Fermi-Dirac-Amaldi central potential, but with the modifications introduced by Bautista (2008) that account for the effects of electron-electron interactions. We also introduce new schemes for the optimization of the variational parameters of the potential. Additional calculations were carried out with the Relativistic Hartree-Fock and the multiconfiguration Dirac-Fock methods. Collision strengths in LS-coupling were calculated in the close coupling approximation with the R-matrix method. Then, fine structure collision strengths were obtained by means of the intermediate-coupling frame transformation (ICFT) method which accounts for spin-orbit coupling effects. Results. We present extensive comparisons between the results of different approximations and with the most recent calculations and experiment available in the literature. From these comparisons we derive a recommended set of gf- values and radiative transition rates with their corresponding estimated uncertainties. We also study the effects of different approximations in the representation of the target ion on the electron-impact collision strengths. Our most accurate set of collision strengths were integrated over a Maxwellian distribution of electron energies and the resulting effective collision strengths are given for a wide range of temperatures. Our results present significant differences from recent calculations with the B-spline non-orthogonal R-matrix method. We discuss the sources of the differences.Comment: 6 figures, 5 tables within text, 2 electronic table

    The nonperturbative propagator and vertex in massless quenched QED_d

    Full text link
    It is well known how multiplicative renormalizability of the fermion propagator, through its Schwinger-Dyson equation, imposes restrictions on the 3-point fermion-boson vertex in massless quenched quantum electrodynamics in 4-dimensions (QED4_4). Moreover, perturbation theory serves as an excellent guide for possible nonperturbative constructions of Green functions. We extend these ideas to arbitrary dimensions dd. The constraint of multiplicative renormalizability of the fermion propagator is generalized to a Landau-Khalatnikov-Fradkin transformation law in dd-dimensions and it naturally leads to a constraint on the fermion-boson vertex. We verify that this constraint is satisfied in perturbation theory at the one loop level in 3-dimensions. Based upon one loop perturbative calculation of the vertex, we find additional restrictions on its possible nonperturbative forms in arbitrary dimensions.Comment: 13 pages, no figures, latex (uses IOP style files

    Review: Transport Losses in Market Weight Pigs: I. A Review of Definitions, Incidence, and Economic Impact

    Get PDF
    Transport losses (dead and nonambulatory pigs) present animal welfare, legal, and economic challenges to the US swine industry. The objectives of this review are to explore 1) the historical perspective of transport losses; 2) the incidence and economic implications of transport losses; and 3) the symptoms and metabolic characteristics of fatigued pigs. In 1933 and 1934, the incidence of dead and nonambulatory pigs was reported to be 0.08 and 0.16%, respectively. More recently, 23 commercial field trials (n = 6,660,569 pigs) were summarized and the frequency of dead pigs, nonambulatory pigs, and total transport losses at the processing plant were 0.25, 0.44, and 0.69% respectively. In 2006, total economic losses associated with these transport losses were estimated to cost the US pork industry approximately $46 million. Furthermore, 0.37 and 0.05% of the nonambulatory pigs were classified as either fatigued (nonambulatory, noninjured) or injured, respectively, in 18 of these trials (n = 4,966,419 pigs). Fatigued pigs display signs of acute stress (open-mouth breathing, skin discoloration, muscle tremors) and are in a metabolic state of acidosis, characterized by low blood pH and high blood lactate concentrations; however, the majority of fatigued pigs will recover with rest. Transport losses are a multifactorial problem consisting of people, pig, facility design, management, transportation, processing plant, and environmental factors, and, because of these multiple factors, continued research efforts are needed to understand how each of the factors and the relationships among factors affect the well-being of the pig during the marketing process

    The effect of two-temperature post-shock accretion flow on the linear polarization pulse in magnetic cataclysmic variables

    Full text link
    The temperatures of electrons and ions in the post-shock accretion region of a magnetic cataclysmic variable (mCV) will be equal at sufficiently high mass flow rates or for sufficiently weak magnetic fields. At lower mass flow rates or in stronger magnetic fields, efficient cyclotron cooling will cool the electrons faster than the electrons can cool the ions and a two-temperature flow will result. Here we investigate the differences in polarized radiation expected from mCV post-shock accretion columns modeled with one- and two-temperature hydrodynamics. In an mCV model with one accretion region, a magnetic field >~30 MG and a specific mass flow rate of ~0.5 g/cm/cm/s, along with a relatively generic geometric orientation of the system, we find that in the ultraviolet either a single linear polarization pulse per binary orbit or two pulses per binary orbit can be expected, depending on the accretion column hydrodynamic structure (one- or two-temperature) modeled. Under conditions where the physical flow is two-temperature, one pulse per orbit is predicted from a single accretion region where a one-temperature model predicts two pulses. The intensity light curves show similar pulse behavior but there is very little difference between the circular polarization predictions of one- and two-temperature models. Such discrepancies indicate that it is important to model some aspect of two-temperature flow in indirect imaging procedures, like Stokes imaging, especially at the edges of extended accretion regions, were the specific mass flow is low, and especially for ultraviolet data.Comment: Accepted for publication in Astrophysics & Space Scienc

    Maternal and fetal outcomes in pregnancies complicated by the inherited aortopathy Loeys–Dietz syndrome

    Get PDF
    Objective Pregnancies in women with Loeys–Dietz syndrome (LDS) are rare and are typically documented in case reports only. Early reports suggested high rates of maternal complications during pregnancy and the puerperium, including aortic dissection and uterine rupture, but information on fetal outcomes was very limited. Design A retrospective cohort study. Setting Eight specialist UK centres. Sample Pregnant women with LDS. Methods Data was collated on cardiac, obstetric, and neonatal outcomes. Main outcome measures Maternal and perinatal outcomes in pregnancies complicated by LDS. Results Twenty pregnancies in 13 women with LDS were identified. There was one miscarriage, one termination of pregnancy, and 18 livebirths. In eight women the diagnosis was known prior to pregnancy but only one woman had preconception counselling. In four women the diagnosis was made during pregnancy through positive genotyping, and the other was diagnosed following delivery. Five women had a family history of aortic dissection. There were no aortic dissections in our cohort during pregnancy or postpartum. Obstetric complications were common, including postpartum haemorrhage (33%) and preterm delivery (50%). In all, 14/18 (78%) of deliveries were by elective caesarean section, at a median gestational age at delivery of 37 weeks. Over half the infants (56%) were admitted to the neonatal unit following delivery. Conclusion Women with LDS require multidisciplinary specialist management throughout pregnancy. Women should be referred for preconception counselling to make informed decisions around pregnancy risk and outcomes. Early elective preterm delivery needs to be balanced against a high infant admission rate to the neonatal unit

    Single-neutron transfer from 11Be gs via the (p,d) reaction with a radioactive beam

    Full text link
    The 11Be(p,d)10Be reaction has been performed in inverse kinematics with a radioactive 11Be beam of E/A = 35.3 MeV. Angular distributions for the 0+ ground state, the 2+, 3.37 MeV state and the multiplet of states around 6 MeV in 10Be were measured at angles up to 16 deg CM by detecting the 10Be in a dispersion-matched spectrometer and the coincident deuterons in a silicon array. Distorted wave and coupled-channels calculations have been performed to investigate the amount of 2+ core excitation in 11Be gs. The use of "realistic" 11Be wave functions is emphasised and bound state form factors have been obtained by solving the particle-vibration coupling equations. This calculation gives a dominant 2s component in the 11Be gs wave function with a 16% [2+ x 1d] core excitation admixture. Cross sections calculated with these form factors are in good agreement with the present data. The Separation Energy prescription for the bound state wave function also gives satisfactory fits to the data, but leads to a significantly larger [2 x 1d] component in 11Be gs.Comment: 39 pages, 12 figures. Accepted for publication in Nuclear Physics A. Added minor corrections made in proof to pages 26 and 3

    KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    Full text link
    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright (V=8.0V=8.0) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with Teff=5370±51T_{\rm eff} = 5370\pm51 K, M=1.4380.052+0.061MM_{*} = 1.438_{-0.052}^{+0.061} M_{\odot}, R=2.720.17+0.21RR_{*} = 2.72_{-0.17}^{+0.21} R_{\odot}, log g=3.7270.046+0.040g_*= 3.727_{-0.046}^{+0.040}, and [Fe/H]=0.180±0.075 = 0.180\pm0.075. The planet is a low-mass gas giant in a P=4.736529±0.00006P = 4.736529\pm0.00006 day orbit, with MP=0.195±0.018MJM_{P} = 0.195\pm0.018 M_J, RP=1.370.12+0.15RJR_{P}= 1.37_{-0.12}^{+0.15} R_J, ρP=0.0930.024+0.028\rho_{P} = 0.093_{-0.024}^{+0.028} g cm3^{-3}, surface gravity log gP=2.4070.086+0.080{g_{P}} = 2.407_{-0.086}^{+0.080}, and equilibrium temperature Teq=171246+51T_{eq} = 1712_{-46}^{+51} K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude, and is the 6th brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric transmission signal of 5.6%. These attributes make the KELT-11 system a valuable target for follow-up and atmospheric characterization, and it promises to become one of the benchmark systems for the study of inflated exoplanets.Comment: 15 pages, Submitted to AAS Journal
    corecore