Aims. This work reports radiative transition rates and electron impact
excitation collision strengths for levels of the 3s23p, 3s3p2, 3s24s, and 3s23d
configurations of Siii. Methods. The radiative data were computed using the
Thomas-Fermi-Dirac-Amaldi central potential, but with the modifications
introduced by Bautista (2008) that account for the effects of electron-electron
interactions. We also introduce new schemes for the optimization of the
variational parameters of the potential. Additional calculations were carried
out with the Relativistic Hartree-Fock and the multiconfiguration Dirac-Fock
methods. Collision strengths in LS-coupling were calculated in the close
coupling approximation with the R-matrix method. Then, fine structure collision
strengths were obtained by means of the intermediate-coupling frame
transformation (ICFT) method which accounts for spin-orbit coupling effects.
Results. We present extensive comparisons between the results of different
approximations and with the most recent calculations and experiment available
in the literature. From these comparisons we derive a recommended set of gf-
values and radiative transition rates with their corresponding estimated
uncertainties. We also study the effects of different approximations in the
representation of the target ion on the electron-impact collision strengths.
Our most accurate set of collision strengths were integrated over a Maxwellian
distribution of electron energies and the resulting effective collision
strengths are given for a wide range of temperatures. Our results present
significant differences from recent calculations with the B-spline
non-orthogonal R-matrix method. We discuss the sources of the differences.Comment: 6 figures, 5 tables within text, 2 electronic table