86 research outputs found

    A new method to extract and purify DNA from allophanic soils and paleosols, and potential for paleoenvironmental reconstruction and other applications

    Get PDF
    Andisols, developed from late-Quaternary tephra (volcanic ash) deposits and dominated by the nanocrystalline aluminosilicate, allophane, contain large stores of organic matter and are potential reservoirs for DNA. However, DNA recovery from Andisols and other allophane-bearing soils has been difficult and inefficient because of strong chemical bonding between DNA and both allophane and organic matter, and also because much DNA can be encased and physically protected in nanopores in allophane nano/microaggregates. We have therefore developed a new two-step DNA isolation method for allophanic soils and buried paleosols, including those low in clay, which circumvents these problems. The method centres on (1) releasing mainly microbial DNA, and extracellular (unbound) DNA, using an alkaline phosphate buffer (“Rai’s lysis buffer”) that blocks re-adsorption sites on the allophanic materials, and (2) the novel application of acidified ammonium oxalate (Tamm’s reagent) to dissolve the allophane and to release DNA which had been chemically-bound and also which had been protected within nanopores. Ammonium oxalate has not previously been applied to soil DNA extraction. DNA yields up to 44.5 ”g g-1 soil (oven-dry basis) were obtained from three field-moist natural allophanic soil samples from northern New Zealand using this two-step method. Following extraction, we evaluated different DNA purification methods. Gel electrophoresis of the extracted DNA followed by gel purification of the DNA from the agarose gel, despite some DNA loss, was the only purification method that removed sufficient humic material for successful DNA amplification using the polymerase chain reaction (PCR) of multiple gene regions. Sequencing of PCR products obtained from a buried allophanic paleosol at 2.2-m depth on a sandy Holocene tephra yielded endemic and exotic plants that differed from the European grasses growing currently on the soil’s surface. This difference suggests that the DNA extraction method is able to access (paleo)environmental DNA derived from previous vegetation cover. Our DNA extraction and purification method hence may be applied to Andisols and allophane-bearing paleosols, potentially offering a means to isolate paleoenvironmental DNA and thus facilitate reconstruction of past environments in volcanic landscapes, datable using tephrochronology, and also aid biodiversity understanding of andic soils and paleosols

    Globetrotting strangles: the unbridled national and international transmission of Streptococcus equi between horses.

    Get PDF
    The equine disease strangles, which is characterized by the formation of abscesses in the lymph nodes of the head and neck, is one of the most frequently diagnosed infectious diseases of horses around the world. The causal agent, Streptococcus equi subspecies equi, establishes a persistent infection in approximately 10 % of animals that recover from the acute disease. Such 'carrier' animals appear healthy and are rarely identified during routine veterinary examinations pre-purchase or transit, but can transmit S. equi to naïve animals initiating new episodes of disease. Here, we report the analysis and visualization of phylogenomic and epidemiological data for 670 isolates of S. equi recovered from 19 different countries using a new core-genome multilocus sequence typing (cgMLST) web bioresource. Genetic relationships among all 670 S. equi isolates were determined at high resolution, revealing national and international transmission events that drive this endemic disease in horse populations throughout the world. Our data argue for the recognition of the international importance of strangles by the Office International des Épizooties to highlight the health, welfare and economic cost of this disease. The Pathogenwatch cgMLST web bioresource described herein is available for tailored genomic analysis of populations of S. equi and its close relative S. equi subspecies zooepidemicus that are recovered from horses and other animals, including humans, throughout the world. This article contains data hosted by Microreact

    Toward community standards and software for whole-cell modeling

    Get PDF
    Whole-cell (WC) modeling is a promising tool for biological research, bioengineering, and medicine. However, substantial work remains to create accurate, comprehensive models of complex cells. Methods: We organized the 2015 Whole-Cell Modeling Summer School to teach WC modeling and evaluate the need for new WC modeling standards and software by recoding a recently published WC model in SBML. Results: Our analysis revealed several challenges to representing WC models using the current standards. Conclusion: We, therefore, propose several new WC modeling standards, software, and databases. Significance:We anticipate that these new standards and software will enable more comprehensive models

    Keratin and S100 calcium-binding proteins are major constituents of the bovine teat canal lining

    Get PDF
    The bovine teat canal provides the first-line of defence against pathogenic bacteria infecting the mammary gland, yet the protein composition and host-defence functionality of the teat canal lining (TCL) are not well characterised. In this study, TCL collected from six healthy lactating dairy cows was subjected to two-dimensional electrophoresis (2-DE) and mass spectrometry. The abundance and location of selected identified proteins were determined by western blotting and fluorescence immunohistochemistry. The variability of abundance among individual cows was also investigated. Two dominant clusters of proteins were detected in the TCL, comprising members of the keratin and S100 families of proteins. The S100 proteins were localised to the teat canal keratinocytes and were particularly predominant in the cornified outermost layer of the teat canal epithelium. Significant between-animal variation in the abundance of the S100 proteins in the TCL was demonstrated. Four of the six identified S100 proteins have been reported to have antimicrobial activity, suggesting that the TCL has additional functionality beyond being a physical barrier to invading microorganisms. These findings provide new insights into understanding host-defence of the teat canal and resistance of cows to mastitis

    Using singscore to predict mutation status in acute myeloid leukemia from transcriptomic signatures.

    Get PDF
    Advances in RNA sequencing (RNA-seq) technologies that measure the transcriptome of biological samples have revolutionised our ability to understand transcriptional regulatory programs that underpin diseases such as cancer. We recently published singscore - a single sample, rank-based gene set scoring method which quantifies how concordant the transcriptional profile of individual samples are relative to specific gene sets of interest. Here we demonstrate the application of singscore to investigate transcriptional profiles associated with specific mutations or genetic lesions in acute myeloid leukemia. Using matched genomic and transcriptomic data available through the TCGA we show that scoring of appropriate signatures can distinguish samples with corresponding mutations, reflecting the ability of these mutations to drive aberrant transcriptional programs involved in leukemogenesis. We believe the singscore method is particularly useful for studying heterogeneity within a specific subsets of cancers, and as demonstrated, we show the ability of singscore to identify where alternative mutations appear to drive similar transcriptional programs
    • 

    corecore