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Abstract

formalism.

Background: The skin is largely comprised of keratinocytes within the interfollicular epidermis. Over approximately two
weeks these cells differentiate and traverse the thickness of the skin. The stage of differentiation is therefore reflected in
the positions of cells within the tissue, providing a convenient axis along which to study the signaling events that occur
in situ during keratinocyte terminal differentiation, over this extended two-week timescale. The canonical ERK-MAPK
signaling cascade (Raf-1, MEK-1/2 and ERK-1/2) has been implicated in controlling diverse cellular behaviors, including
proliferation and differentiation. While the molecular interactions involved in signal transduction through this cascade
have been well characterized in cell culture experiments, our understanding of how this sequence of events unfolds to
determine cell fate within a homeostatic tissue environment has not been fully characterized.

Methods: We measured the abundance of total and phosphorylated ERK-MAPK signaling proteins within interfollicular
keratinocytes in transverse cross-sections of human epidermis using immunofluorescence microscopy. To investigate
these data we developed a mathematical model of the signaling cascade using a normalized-Hill differential equation

Results: These data show coordinated variation in the abundance of phosphorylated ERK-MAPK components across the
epidermis. Statistical analysis of these data shows that associations between phosphorylated ERK-MAPK components
which correspond to canonical molecular interactions are dependent upon spatial position within the epidermis. The
model demonstrates that the spatial profile of activation for ERK-MAPK signaling components across the epidermis may
be maintained in a cell-autonomous fashion by an underlying spatial gradient in calcium signaling.

Conclusions: Our data demonstrate an extended phospho-protein profile of ERK-MAPK signaling cascade components
across the epidermis in situ, and statistical associations in these data indicate canonical ERK-MAPK interactions underlie
this spatial profile of ERK-MAPK activation. Using mathematical modelling we have demonstrated that spatially varying
calcium signaling components across the epidermis may be sufficient to maintain the spatial profile of ERK-MAPK
signaling cascade components in a cell-autonomous manner. These findings may have significant implications
for the wide range of cancer drugs which therapeutically target ERK-MAPK signaling components.

Background

The epidermis is an epithelial tissue which forms the
outermost layer of the skin (Fig. 1a) and performs an
essential role in protecting an organism against envir-
onmental perturbations [1]. Interfollicular human epi-
dermis consists of keratinocytes arranged in a spatial
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gradient of differentiation across the deep-to-superficial
axis of the tissue (Fig. 1b). Epidermal barrier function is
dependent upon changes to keratinocyte biochemistry
and morphology that occur during differentiation [1, 2]
and discrete tissue layers (Fig. 1b) are defined by histo-
logical features that reflect underlying molecular changes
[1, 3-7]. A variety of signaling proteins are also modu-
lated across the epidermis to coordinate keratinocyte
terminal differentiation (Fig. 1c), including extracellu-
lar matrix ligands and associated plasma membrane
receptors [8—10], and calcium (Ca**) signaling compo-
nents [11, 12]. Of particular interest for this study,

© 2015 Cursons et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-015-0187-6&domain=pdf
mailto:edmund.crampin@unimelb.edu.au
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Cursons et al. BVIC Systems Biology (2015) 9:41 Page 2 of 16

(@

hair

superficial
epidermis

dermis ,
Keratnf)lcyte
Differentiation

Gradient
hypodermis

blood

deep vessels

nerves

(b) wmKeratinocyte)Differentiation Gradient
\ € \w

C——

> S S >
q?‘b Af.} & 'y Q\‘b & .g\@b
RN S L & & & S &
Y
(C) L N Strong
S \%}MW%%% signal
' QU1
#// N\ L\ Z{//}({(l \ Weak
Basal Layer Signals signal
spatial
position
(d) l? within 0
epidermis
( v 4 v PLASMA )

CaM MEMBRANE

=
&
o1 O o

8
[psziapszz)
sl e I
I
[ ERK-1/2 [«

i
)
"

L cyToPLASM NUCLEUS __J

Fig. 1 (See legend on next page.)
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(See figure on previous page.)

Fig. 1 ERK-MAPK Signaling Within Human Epidermis. a Epidermis is the outermost tissue layer of the skin with an essential role in protection
from the environment. Epidermal barrier function is established and maintained by keratinocytes which undergo large biochemical and morphological
changes during keratinocyte terminal differentiation. This establishes a spatially-regulated keratinocyte differentiation gradient across the depth of the
epidermis, between hair follicles (within interfollicular epidermis). b Differentiating keratinocytes are pushed towards the superficial surface of the
epidermis by proliferation within the basal layer. As this occurs, keratinocytes undergo terminal differentiation, establishing a spatiotemporal
differentiation gradient across the depth of the epidermis. ¢ The effect of tissue structure on paracrine/endocrine signals, and differentiation-associated
changes in the abundance or activity of scaffold co-factors establish signal gradients across the depth of the epidermis. The gradient of Ca®* within the
epidermis is similar to the ‘superficial signals’ example; however, it peaks just prior to the transitional layer, rather than within the outermost superficial
layers. d A simple representation of the canonical ERK-MAPK signaling cascade with: inputs to Raf-1 from extracellular calcium (Ca®*; activating) and
plasma membrane calmodulin (CaM; inhibiting) modulated by cellular position along the keratinocyte differentiation gradient; the signal transduction
cascade through Raf-1, MEK-1/2 and ERK-1/2; negative feedback from phospho-ERK-1/2 to phospho-Raf-1; and nuclear phospho-ERK-1/2 promoting its
own dephosphorylation. Further details on these interactions are given within the Materials and methods. Nodes drawn in grey are not explicitly modeled,

as they were not measured experimentally. A more comprehensive reaction kinetic scheme is given within Additional file 7: Figure S1 in reaction_networkpng
J

increasing extracellular Ca®* ion concentration is known to
promote keratinocyte terminal differentiation in vitro
[13, 14], and a Ca®* gradient is maintained across the depth
of the epidermis, increasing from the basal layer to the
outermost granular layer (similar to ‘Superficial Signals’ in
Fig. 1c) before decreasing across the transitional layer
[11, 12].

The canonical extracellular signal regulated kinase (ERK)
cascade of the mitogen activated protein kinase (MAPK)
family has been implicated in the regulation of keratinocyte
differentiation in vivo [15-17] and in vitro [18, 19]. Signaling
through ERK-MAPK integrates and mediates the effects of
epidermal growth factor receptor (EGFR) [19, 20], integrin
[21, 22] and calcium signaling [18, 23]. These input stimuli
are localized to the plasma membrane where they regulate
the conversion of Ras-GDP to active Ras-GTP. Generation
of Ras-GTP promotes signaling through a sequential cas-
cade of kinases which are activated by phosphorylation
prior to phosphorylating their own downstream targets,
progressing through activation of Raf-1 and B-Raf dimers,
to MEK-1/2 and then ERK-1/2 (Fig. 1d). Phosphorylated
ERK-1/2 then act upon a large number of proteins includ-
ing several transcription factors to activate gene expression
and initiate a cellular response [16, 24]. The sub-cellular
localization of activated ERK-MAPK components is
also important for determining specific cellular re-
sponses to the wide range of signals that influence
ERK-MAPK signaling [25, 26].

The ERK-MAPK cascade has been extensively character-
ized using in vitro models [27-30] and computational
methods [25, 31-33], typically over a time course of mi-
nutes-to-hours following addition of a mitogenic stimulus
[27] or some other perturbation [29]. A number of studies
have modeled intracellular signaling during developmental
pattern formation, primarily using Drosophila and other
malleable systems [34, 35]. Within human tissues however,
the temporal and spatial dynamics of ERK-MAPK signaling,
and the role that it may play in regulating cellular processes
to help maintain tissue homeostasis are not well under-
stood. Keratinocytes take approximately two weeks to

traverse the epidermis as they undergo terminal differenti-
ation [36-38], raising the question as to how ERK-MAPK
signaling operates over this much longer timescale in situ.
Furthermore, cells grown in vitro are exposed to the differ-
ent environmental cues than cells in their in vivo tissue,
and this can have significant effects on phenotypic behavior
and intracellular signaling. For example, epidermal kerati-
nocytes grown in vitro undergo abnormal differentiation
expressing proteins more commonly associated with
wound-healing and basal cell carcinoma [39-41].

In this study we therefore determined to characterize
ERK-MAPK signaling in human epidermis in situ, by
measuring abundance of signaling pathway components
and mathematically modeling the spatiotemporal dynamics
of the signaling cascade. We used immunofluorescence
to measure the abundance of phospho-Raf-1, phospho-
MEK-1/2, phospho-ERK-1/2 and calmodulin (CaM) within
healthy human skin samples. A keratinocyte’s position within
the epidermis, along the deep-to-superficial axis of the tissue,
directly reflects its relative stage of differentiation. We used
this to develop a computational framework for transforming
the image data into a quantitative format, which allowed us
to combine observations across multiple experiments. Our
results show gradual, coordinated increases in the abun-
dance of ERK-MAPK phospho-proteins over the depth of
the skin, over much longer timescales than those observed
for in vitro studies. Statistical analyses highlighted the
importance of considering spatial position within the tissue
when examining relationships between the measured
variables and suggested canonical interactions are active
during keratinocyte differentiation. Thus, we constructed a
mathematical model of ERK-MAPK signaling interactions
derived from the literature, using a normalized-Hill differen-
tial equation approach [42, 43], with which to analyze our
data. The purpose of this model was to test whether Ca*
signaling components which vary over the depth of the
epidermis were sufficient to drive signaling through
canonical ERK-MAPK interactions and reach different
steady-state activation levels, in a manner which was consist-
ent with the extended spatiotemporal phosphorylation
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profiles observed within our data. Our results suggest that
canonical ERK-MAPK interactions are operating, as overall
pathway activity is modulated through the depth of the
epidermis.

Results

Spatial transformation of immunofluorescence data using
histological landmarks reveals distinct spatial profiles of
in situ ERK-MAPK phosphorylation within human skin

We used confocal microscopy imaging of immunofluores-
cence-labeled human epidermis to measure the abundance
of ERK-MAPK phospho-proteins and calmodulin within
interfollicular keratinocytes from samples of human skin
(Additional file 1: Figure S2, Additional file 2: Figure S3,
Additional file 3: Figure S4, Additional file 4: Figure S5 in
pRafl.png; pMEK.png; pERK.png; CALM.png). Regions of
interest were manually selected within the image data
using a GUI which displayed the images and samples at
different z-positions and tracked input co-ordinates
through ‘mouse clicks’. This provided a relatively quick ap-
proach to sample the image data across multiple patients
and targets, while distinguishing distinct subcellular do-
mains of the cytoplasm, nucleus (Fig. 2a), and where pos-
sible the plasma membrane (Additional file 4: Figure S5 in
CALM.png).

Images of the epidermis were segmented into discrete tis-
sue layers using histological features apparent with single-
target labeling (Fig. 2b; yellow lines) as detailed in our previ-
ous work [44]. Next, we introduced a one dimensional
‘layer-normalized’ ordinate which followed the spatiotempo-
ral gradient of keratinocyte terminal differentiation, while
minimizing the effect of variations in tissue layer thickness
(Fig. 2b) caused by réte ridges (epidermal extensions in to
the underlying dermis) and inter-patient differences in the
absolute thickness of the epidermis (Additional file 5: Figure
S6 in PatALL_-_CompThickness.png). This layer-normalized
distance mapped to whole integers at tissue layer boundaries
(Table 1), and the relative position within a tissue layer for
each sampled region was calculated by linear interpolation,
using minimum distances to the deep (d;) and superficial
(d5) boundaries of each tissue layer (Fig. 2b). The computa-
tional approach to transform fluorescence image data onto a
layer-normalized ordinate made the data more comparable
across patients (Fig. 2c) and target proteins (Fig. 2d). Fluores-
cence intensity data reflecting protein abundance were
extracted from the sampled pixels and mapped to the
layer-normalized distance prior to loess smoothing
(Fig. 2c). Smoothed loess curves calculated from these
data therefore reflect trends for protein abundance
variation across the depth of the epidermis.

To use these data for subsequent modeling (Fig. 2d), we
mapped normalized signal intensity data from the layer-
normalized distance on to discrete spatial partitions which
capture the relative number of cells within each tissue layer
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(Fig. 2¢, x-axes; Table 1; further details given in Materials
and methods—Image data processing).

Spatial profiles of ERK-MAPK signaling components indicate
varying states of the signaling pathway in keratinocytes
across the epidermis

For in vitro studies the ERK-MAPK signaling cascade is
usually activated by a mitogenic stimulus and changes
in protein phosphorylation are examined over minutes-
to-hours. Our immunofluorescence data suggest that
phosphorylated ERK-MAPK components change in a
coordinated manner over the depth of the epidermis
(Fig. 3a & b), and thus over a much longer timescale
than in vitro studies. The notion that cells within different
parts of a tissue behave in a different yet coordinated man-
ner is supported by qualitative observations throughout
the literature, thus, we attempted to qualify our observa-
tion that ERK-MAPK is modulated across the depth of the
epidermis in a quantitative manner.

Our image processing framework transforms fluores-
cence intensity data onto the layer-normalized distance
ordinate (Fig. 2), producing ‘spatially-conditioned’ data,
where the abundance of each target is described with re-
spect to relative spatial position within the epidermis.
To test the significance of this spatial conditioning,
phospho-protein abundance data were randomly resampled
along the spatial axis. These scrambled data were used
to establish a null distribution describing the strength
of statistical association which could be expected from
data with the same marginal distributions (i.e. those aris-
ing by chance), in the absence of any spatial information.

We identified the pairwise relationships between
phosphorylated ERK-MAPK components which have a
spatially-conditioned statistical association which is greater
than associations observed within the spatially-scrambled
null distribution (Fig. 3¢ & d; p-value <0.01). Many are
well-studied, canonical signaling interactions, suggesting
that these relationships may be active over the gradient of
keratinocyte terminal differentiation (Additional file 6:
Table S1). This result highlights the importance of con-
sidering spatiotemporal information when examining
intracellular signaling mechanisms in situ. Furthermore,
given the two week time course associated with keratino-
cyte terminal differentiation [36—38], this result suggests
that phosphorylation of the ERK-MAPK cascade is being
regulated over this extended timescale in situ.

Mathematical modeling of ERK-MAPK signaling across the
epidermis is consistent with the canonical signaling cascade
operating in a quasi-steady-state manner

To investigate whether canonical ERK-MAPK interactions
identified in vitro can explain the extended phosphorylation
gradient reported here, we use a normalized-Hill differential
equation approach [43] to model ERK-MAPK signaling



Cursons et al. BVIC Systems Biology (2015) 9:41 Page 5 of 16

Segment the
Image Data
Through
Manual
Sampling

superficial

phospho-MEK-1/2

Cytoplasmic pMEK-1/2

i RO
Within Ti

Tayers (Q\Q-Q{)QA\ |

>

NS < < NS
& & Sy ¥ &
¥ & LI e Q :
XL q?oa @é S s &
S O ¢
&5 Y%
N
0 1 2 3
dl 1D Layer-Normalised Ordinate

dnorm™ilayer’ I+ &

(C) 250 3 Combine E‘ . p-MEK-1/2,
Transform Signal 2700 = 2 DataAcross 2 fit20]
Data to 1D Axis % 150 ¥+27§ g Patients *qé G
2} w205 2 - —_—
= pro 2= g // -
< 100 g S 5
) //\“ g .= o .
Apply Loess & -5 p = =20
: i N erform = ’
Smoothing Within 0 i ) 3 Spatial - TR R S R
Each Tissue Layer : ; patia & . -
Layer-Normalised Distance Partitioning Spatial Partitions

(d) Data Across Proteins and Localisations +  Network Structure ~ + Normalised Hill differential

wif P-Raf-ly, o p-ERK-1/20y, o . equations at steady-state Perform

o N o O Mathematical
S

—— .

B i w?__.’«vv«, | — .
=Y i ) Q) S Modelling
1 2 4 5 6 7 1 2 4 5 6 7 +"‘ %
ﬁj 231 CaMmemb 201 p"ERK' 1/2nuc ‘g
® =

/'/C\ i — PN
=4 M rapRR

123" 4 "5 "6 7 12 3 4 5 6 7

-

NUCLEUS

[phospho-A]

CYTOPLASM

Fig. 2 Transforming fluorescence image data in to a spatially-conditioned, quantitative format for mathematical analysis. a Image data were
obtained by immunofluorescence labeling and confocal microscopy, and different sub-cellular localizations (cytoplasm and nucleus) were
manually sampled using a graphical user interface. The position and orientation of the cell selected for surface rendering (inset) has been
highlighted (orange lines). b Epidermal tissue layers that could be distinguished using label-independent criteria were demarcated. The relative
position of each sample was normalized within the layer using linear interpolation, then added to a whole integer which distinguished tissue
layers (ijayer; Table 1), such that the normalized distance, dnom = ijayer + (d1/(d; + ds)). € The sampled fluorescence intensity data (grey dots)
underwent loess smoothing (blue line). Spatial conditioning allowed data from Patients One (red), Two (green) and Three (blue) to be directly
compared. d Protein abundance data from specific sub-cellular compartments were compared to a normalized-Hill differential equation model,
with a literature derived network structure (described in Fig. 1d). This model was solved to steady-state at different spatial positions through
the epidermis




Cursons et al. BVIC Systems Biology (2015) 9:41

Table 1 Spatial partitioning scheme of epidermal tissue layers
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Layer-normalized distance

0-1 1-2 2-3
Total spatial partitions Basal layer Spinous and granular layers Transitional layer
7 1 2-5 6&7
28 1-4 5-20 21-28

The layer-normalized distance was converted from a continuous measure along the gradient of keratinocyte terminal differentiation into a discrete number of
‘spatial partitions’ as illustrated in Fig. 2c. These spatial partitions better reflect the relative number of cells within each layer, with a ratio of 1:4:2; one basal cell,

four spinous and granular cells and two transitional cells

(Fig. 2d). This simplified modeling approach is largely
dependent upon the network structure and directionality of
interactions defined within the model, making it attractive
for our system.

The signaling network (Fig. 1d & Additional file 7: Figure
S1 in reaction_network.png) contained the canonical
Raf-MEK-ERK interactions with MEK and ERK explicitly
separated into cytoplasmic and nuclear compartments
with shuttling. Tissue Ca** and plasma membrane CaM
were included as an activator and inhibitor of cytoplasmic
phospho-Raf-1, respectively [18, 23]. Feedback mecha-
nisms within the ERK-MAPK cascade were also incorpo-
rated, namely an inhibitory feedback from cytoplasmic
phospho-ERK-1/2 to cytoplasmic phospho-Raf-1 [45], and
the self dephosphorylation of nuclear phospho-ERK-1/2
through inducing the expression of the nuclear localized
ERK phosphatase DUSP4. [46]. State variables are defined
as the fractional activation of each signaling species rela-
tive to an arbitrary maximal activity (e.g for ‘ERK we
examine phospho-ERK-1/2 activity levels).

Relative calcium concentrations (Ca”*) through the
depth of the epidermis (Fig. 4a) were derived from the
literature [11], and the spatial profile of plasma mem-
brane calmodulin (CaM) (Fig. 4b) was derived from our
immunofluorescence data (Additional file 4: Figure S5 in
CALM.png). The activity of these input species was used
to stimulate the in situ fractional activation of Raf-MEK-
ERK using normalized-Hill differential equations. Using
spatial steps of ‘half-cell’ width across the epidermis (i.e.
steps of 0.5 across 7 spatial partitions; Table 1) we generate
conditions for the cell signaling cascade model at 15 spatial
locations. For each of these 15 conditions, the model
was then integrated until a steady-state was reached. This
allows us to determine whether spatial variation in the
modeled ‘inputs’ to the signaling cascade can maintain the
observed spatial profile of ERK-MAPK activation across the
epidermis. Only four parameters were optimized during the
least-squares fitting of cytoplasmic and nuclear phospho-
ERK-1/2 immunofluorescence data: the baseline levels and
amplitudes of Ca®* and plasma membrane CaM (Table 2).

Qualitatively, the simulated trends for Raf-1, MEK-1/2,
and ERK-1/2 fractional activation (Fig. 4c-g) are similar to
our spatially-conditioned immunofluorescence data. Within
the basal layer (spatial partition 1) the simulations predict

relatively low levels of phosphorylation, which is consistent
with the immunofluorescence data except for nuclear
phospho-MEK-1/2 from two patients (patients 1 and 3).
Across the spinous and granular layers (spatial partitions
2-5), there was very good agreement between simulated
and measured components, both showing consistent in-
creases in the abundance of the phosphorylated species.

The model predictions performed poorly within the
outermost transitional layers (spatial partitions 6 & 7). In
particular, the immunofluorescence data showed large de-
creases in the abundance of cytoplasmic phospho-Raf-1
and both cytoplasmic and nuclear phospho-MEK-1/2, but
the model simulated little or no decrease in the phosphory-
lated abundance of these species. This can probably be at-
tributed to the degradation processes activated during the
final stages of keratinocyte differentiation [1], which are not
described within our model.

Agreement between our immunofluorescence data and
model predictions over the spinous and granular layers
suggests that the network structure of the canonical
signaling cascade with the specified feedback loops is
sufficient to reproduce key features of the extended
spatial phosphorylation gradient of ERK-MAPK compo-
nents observed in human skin. As differentiating keratino-
cytes progress through the depth of the epidermis and
change their expression of signaling receptors and adhesion
molecules, the activity of signaling pathways within the
keratinocytes shifts, and settles to a new, local steady-
state of activation. In our model, we represent tissue
microenvironment changes through the relative abun-
dances of tissue Ca** and plasma-membrane CaM, and at
each position in the epidermis we solve our simple model
of the ERK-MAPK cascade within keratinocytes to steady-
state. Modulation of ERK-MAPK phosphorylation over
these extended timescales may play a central role in the
pattern formation processes which establish and maintain
epidermal homeostasis.

Discussion

In this study, we developed a novel computational ap-
proach to quantify ERK-MAPK activation within human
epidermis. Our layer-normalized ordinate incorporates
histological landmarks which separate distinct epidermal
tissue layers. This allowed us to combine protein
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Fig. 3 Spatially coordinated changes to phosphorylated ERK-MAPK components within human epidermis. a Human epidermis simultaneously
labeled against phospho-Raf-1 (pS338; cyan), phospho-MEK-1/2 (pS218/pS222; magenta) and phospho-ERK-1/2 (pT183/pY185; yellow). Scale bar
represents 10 pm, image data have undergone non-linear transformation to improve printed appearance. b The normalized abundance of
cytoplasmic (solid lines) and nuclear (dashed lines) phospho- Raf-1, =MEK-1/2, and ERK-1/2 (colors as above) within interfollicular keratinocytes
undergoing terminal differentiation in situ. The ¢ Pearson’s correlation and d mutual information were calculated between all pairwise
combinations of target variables using the spatially-conditioned abundance data (grey histograms; axes at left). The strength of these statistical
associations was compared to a null distribution calculated from spatially-scrambled data (red probability density function [p.d.f]; axes at right),
which was used to calculate two-sided (Pearson’s correlation) and one-sided (mutual information) 99 % confidence intervals (blue vertical lines).
For details on the strength of individual relationships please refer to Additional file 6: Table S1

abundances measured using single-target labeling into
an aggregate data set for mathematical modeling. Previ-
ous studies have used the relationship between a keratino-
cyte’s position within the epidermis and its stage of
differentiation, examining protein abundance data (fluor-
escence signal intensity) with respect to the position
within the epidermis, and constructing ‘quantitative spatial
profiles’ [47, 48]. Immunohistochemistry has also been ap-
plied to measure protein abundances within the skin and
to quantify variation across different epidermal layers [49].
This is an important distinction between our work where
multiple pattern formation processes maintain complex
structures and intracellular signaling states, against studies
of in vitro cell signaling where there is only random hetero-
geneity across the spatial domain.

For cell culture experiments a high degree of intercellular
heterogeneity has been noted for ERK signaling, such that
the population mean can provide a poor representation of
the signal within individual cells [50]. Our statistical ana-
lysis (Fig. 3) shows that spatially-dependent changes along
the gradient of cellular differentiation account for a large
degree of the covariance in the phosphorylation of
ERK-MAPK components (i.e. there is a relatively high
mutual information between the abundance of successive
phosphorylated pathway components). The regulation
of signaling component compartmentalization is also
thought to be critical for specificity of intracellular sig-
naling pathway responses to different stimuli [26, 51],
thus we distinguish the nucleus and cytoplasm when
measuring the abundance of active ERK-MAPK compo-
nents. We believe that methodologies using tissue-specific
landmarks with information on subcellular localization,
as described here, may be useful to combine data sets
and investigate the role of intracellular signaling in the
physiological functions of tissues.

Motivated by our statistical analysis, we constructed a
model of ERK-MAPK interactions using normalized-Hill
differential equations [42, 43]. During model fitting the
equations for pathway interactions (e.g. phosphorylation)
used default parameters, and only four parameters were
optimized: the baseline levels and amplitudes of fractional
activation for the input Ca** and CaM (Table 2). Given
that many of our parameters were poorly constrained,
and our signaling network contained several double-

phosphorylation steps which can contribute to a non-linear
response, the ability of the normalized-Hill approach to
qualitatively reproduce in situ immunofluorescence
data without extensive parameter-fitting was attractive. A
primary limitation of this approach, however, is that it re-
stricts our ability to interpret the modeling results in rela-
tion to the mechanistic rate constants of kinetic models.
Furthermore, our simplified modeling approach could not
examine the intercellular heterogeneity present within the
data (Additional file 1: Figure S2, Additional file 2: Figure
S3, Additional file 3: Figure S4, Additional file 4: Figure S5
in pRafl.png; pMEK.png; pERK.png; CALM.png), as dis-
cussed in detail below.

The model we developed suggests that the canonical
ERK-MAPK signaling cascade operating in a cell-autono-
mous manner (i.e. without direct cell-cell interactions
or long range diffusion of ERK signaling molecules) can
reproduce general features of the immunofluorescence
data measured in situ, when driven by underlying changes
in the surrounding tissue microenvironment. In particular,
the relative abundances of tissue Ca?" and plasma-
membrane CaM were implemented as drivers of the
model with spatial gradients, suggesting these molecules
may be sufficient to establish the extended ERK-MAPK
phosphorylation gradient we observed within homeostatic
human epidermis. This is largely consistent with observa-
tions that increasing extracellular Ca®* ion concentration
promotes keratinocyte terminal differentiation in vitro
[13]. It is further supported by the plasma-membrane
localization of calmodulin within basal keratinocytes,
where it may be down-regulating EGFR and Ras signaling
to establish a threshold that prevents proliferation at low
doses of growth factors [18]. When CaM-mediated in-
hibition of Raf was removed from the model, there was
an increase in ERK-MAPK pathway activation, and the
spatial profile of activation was much more linear, likely
reflecting the input Ca®* gradient (Additional file 8:
Figure S7 in SEDML_EpidermalMAPK_varySpatPos_exec-
TimeCourse_noCamRaflnhib-output_ScatPlot.png).

Although calcium signaling alone appeared sufficient to
drive the observed gradient of ERK-MAPK activation in
our model, we acknowledge that this does not contain
all possible mechanisms which may influence ERK-MAPK
signaling or keratinocyte differentiation. A wide array
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Fig. 4 Simulated and measured abundance profiles of species in our ERK-MAPK signaling model across human epidermis. Our model of the ERK-MAPK
pathway is stimulated by: a normalized epidermal Ca®* as derived by Mauro et al. [11]; and b plasma membrane CaM abundance as derived from our
experimental data (Additional file 4: Figure S5i in CALM.png). At each spatial position, the model was run to steady-state with these inputs and c-g the
simulated relative abundance of ERK-MAPK components is compared to our in situ experimental measurements. The y-axis in (@) has normalized units,
and where experimental data is plotted (b-g), the y-axis represents the z-score of the immunofluorescence pixel intensities. The model input and
output abundances were manually scaled to visually fit the experimental data by adjusting the baseline level and amplitude

of signals regulate keratinocyte terminal differentiation
[8—12] and mathematical methods have been used to
identify dysregulated feedback mechanisms which con-
tribute to a variety of skin pathologies [52-54]. Our
model does not attempt to explain the mechanisms that
establish and maintain the epidermal Ca** gradient
[12, 14], in part, because increasingly complex mecha-
nisms are still being identified, such as circadian-
rhythm regulated changes in transcript abundance
which influence the response of keratinocyte stem cells
to Ca®*signaling [55]. Furthermore, due to the ‘single
time point’ nature of our in situ image data we also
cannot consider intracellular Ca** oscillations with epi-
dermal keratinocytes [56, 57].

The model provides a good match to the data across
the spinous and granular layers where the gradient of
keratinocyte differentiation is more gradual and continu-
ous (Fig. 4c-g). Failure to match the data within the
basal layer may be partially attributable to heterogeneity
in Ca®* abundance [12] imposed by asynchronous oscil-
lations, such that small fractions of cells are undergoing
different cell processes at any given time-point. Differences
in short timescale processes such as this oscillatory be-
havior may have contributed to variation in the basal layer
signaling states that were observed for Patients One and
Three (Fig. 4). Rule-based formalisms have given insight
towards TGF-B1 regulation of keratinocyte proliferation
during wound healing [58] and have been used to test al-
ternative hypotheses for the regulation of basal keratino-
cyte proliferation [59]. Coupling multiple agent-based
models together with tissue-gradient data may provide an
approach to further examine the tissue-level effects of
intercellular heterogeneity and shorter timescale processes
such as the Ca>* oscillations described above.

An aim of this study was to investigate how the ERK-
MAPK cascade extensively studied in vitro may contribute
to the maintenance of tissue structure in human epidermis.

Table 2 Optimized model parameters

Species Baseline level (b) Amplitude (a)
Tissue Ca”* (Ca) 0.754 0092
Plasma membrane CaM (CaM) 0363 0.485

Baseline level (b) and amplitude (a) parameters for the Ca®" and
plasma-membrane CaM fractional activations were optimized to produce the
closest least-squares fit to the cytoplasmic and nuclear phospho-ERK-1/2
immunofluorescence data (for all three patients)

The pattern of ERK-MAPK signaling along the gradient of
keratinocyte terminal differentiation appears to be largely
consistent with epidermal biology and the ‘divergent effects’
of ERK-1/2 phosphorylation in regulating cell behavior. For
example, transient activation of the ERK-MAPK cascade,
typically observed in vitro after a relatively large dose of
growth factors or other stimuli, tends to promote mitosis
and cellular proliferation [18]. Within the basal layer of
the epidermis, we observed relatively low ERK-MAPK ac-
tivity, while a small number of cells show relatively high
phospho-MEK abundance with nuclear localized signal
(Additional file 2: Figure S3 in pMEK.png [red arrowheads]
& Additional file 9: Figure S8 in FullCellSeg pMEK_Int-
DistPDFs_edit.png). Unfortunately, due to the single-target
labeling applied for this study, the relative activity of
phospho-ERK within these cells cannot be directly exam-
ined. Furthermore, due to the relatively low frequency of
phospho-MEK  bright basal keratinocytes, we have not
been able to identify such cells within the simultaneously-
labeled tissue samples. Despite this, our observation that
the basal epidermis contains a small number of phospho-
MEK bright cells is consistent with the notion that basal
keratinocytes are undergoing asynchronous division [10],
such that at any one time, a small number of cells will
show a transient increase in MEK activation just prior
to Go/M progression [29]. This small number of prolif-
erative basal keratinocytes with a relatively high nuclear
phospho-MEK-1/2 abundance may have contributed
to poor agreement between simulated and measured
abundances (Fig. 4e).

As keratinocytes detach from the underlying basement
membrane and begin execution of their terminal differenti-
ation program, there is a small stepwise increase in the
abundance of phospho-MEK-1/2 followed by a sustained,
gradual increase over the spinous and granular tissue layers.
Increased phosphorylation of ERK-1/2 has been observed
with terminal differentiation in various cell lines [18, 60]
and sustained ERK-MAPK pathway activation has been re-
ported to induce growth arrest in epidermoid carcinoma
cells [19]. It is tempting to speculate that sustained activa-
tion of the ERK-MAPK pathway helps to suppress cellular
proliferation and ensure growth arrest in suprabasal kerati-
nocytes by reducing the availability of unphosphorylated
MEK-1/2 and ERK-1/2, preventing the transient increases
that promote mitosis. The presence of complex regulatory
processes described above, and the abnormal differentiation
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programs adopted by keratinocytes in vitro [39—41], make
it difficult to test model predictions directly; however, trans-
genic mice with modified signaling components under
inducible expression within the epidermis may be useful for
testing such mechanisms [17, 61]. We believe that the
observations in this work highlight the need for further
studies of in situ signaling pathway activation.

Conclusions

This study developed a novel, joint experimental-
computational framework for investigating the regula-
tion of ERK-MAPK signaling in homeostatic human epi-
dermis. We have identified an extended phospho-protein
gradient of ERK-MAPK signaling cascade components
over the depth of the epidermis, and we utilized statistical
analysis and mathematical modeling to demonstrate that
canonical ERK-MAPK interactions driven by Ca®" sig-
naling components operating at quasi-steady-state are
sufficient to establish this extended phosphorylation
gradient. These findings may have implications for the
wide range of cancer drugs which therapeutically target
ERK-MAPK signaling components.

Materials and methods

Ethics statement

Human skin samples were obtained with written informed
consent under a protocol approved by the New Zealand
Northern Regional X Ethics Committee (project number
NTX/08/09/086) and Counties-Manukau District Health
Board (project number 681).

Tissue collection

Fresh skin samples obtained from healthy patients undergo-
ing plastic or reconstructive surgery were snap frozen
in liquid nitrogen and stored at -80 °C.

Immunofluorescence labeling and confocal microscopy
A detailed description of the immunofluorescence labeling
and confocal microscopy protocols, including antibody
catalogue numbers, are given elsewhere [44]. The antibody
against calmodulin (UniProt: P62158) targets multiple iso-
forms. A phospho-serine 338 specific antibody was used to
examine the activation state of Raf-1 (UniProt: P04049), as
this phospho-epitope is routinely used as a surrogate
marker for Raf-1 activation [45]. Antibodies against double-
phosphorylated MEK-1/2 (pS218/pS222) and double-
phosphorylated ERK-1/2 (pT183/pY185) were used to
examine the abundance of active MEK-1/2 (UniProt:
Q02750/P36507) and ERK-1/2 (UniProt: P27361/P28482).
Human epidermis was sectioned within a cryostat
at —20 °C and immediately fixed with paraformaldehyde at
room temperature, then labeled by indirect immunofluor-
escence and imaged using a Leica TCS SP2 confocal
microscope. Secondary antibody control slides were
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imaged at the same gain and offset settings to ensure that
the effects of non-specific labeling or auto-fluorescence
were minimal. An imaging resolution at or exceeding
the Nyquist sampling criteria was used, allowing the
plasma-membrane, nucleus and cytoplasm of individual
cells to be identified. Gain and offset values were ad-
justed to minimize underflow and overflow, and under
these imaging conditions, fluorescence signal intensity was
interpreted as an approximately linear measure of protein
abundance within each voxel [62]. Image data were
stored in an uncompressed .TIFF format.

Image data processing
A collection of scripts for quantifying the image data was
written using MATLAB (MathWorks, Natick MA). A
graphical user interface was developed using the MATLAB
image processing toolbox and the ginput2 function
(MATLAB Central File Exchange FileID: #20645) to fa-
cilitate selection of regions of interest (ROIs). Tissue
layer boundaries were specified using the path tool within
GIMP (v. 2.4.7) and exported as a binarized .TIFF format.
The minimum distance between ROIs and surrounding
tissue layer boundaries was determined using the intrinsic
MATLAB function dist. For analyses where data were
combined across patients (Fig. 3), the signal intensity data
were z-score normalized for each patient and then combined.
Loess smoothing was chosen due to its ability to cope
with edge effects (by selecting local sample points
dependent upon the smoothing frequency parameter)
[63]. Loess smoothing was applied to the signal intensity
data across each tissue layer using the intrinsic MATLAB
function smooth. Although the normalized distance
co-ordinate system captured the distinct epidermal layers
well, signal intensity data examined against this gradient
did not capture the different thicknesses of each tissue layer
(Additional file 5: Figure S6 in PatALL_-_CompThick-
ness.png). Thus, the spatial domain was further partitioned
for discrete spatial sampling, in a manner that reflected the
ratio of 1:4:2 cells between the tissue layers (Table 1).

Statistical test of spatial conditioning

Image data (Fig. 3; Additional file 1: Figure S2, Additional
file 2: Figure S3, Additional file 3: Figure S4) suggested that
activation of the ERK-MAPK cascade occurs in a coordi-
nated manner over the spatiotemporal gradient of keratino-
cyte terminal differentiation. To test this in a quantitative
manner, a null hypothesis was proposed:

“the strength of statistical association between
measured fluorescence signals (signaling component
abundance) is independent of spatial conditioning”

Signal intensity data were extracted over 28 spatial
partitions (Table 1). Data were examined over the spatial
dimension, and the Pearson’s correlation and mutual
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information between each signaling component was
calculated using the MATLAB corr and mutualinfo
(MATLAB Central File Exchange FileID: #14888) func-
tions, respectively. Data scrambling was applied to abrogate
spatial conditioning of each variable while retaining the
same marginal distributions of signal intensity data. For
each target, signal intensity data were scrambled along the
spatial domain (i.e. random sampling without replacement)
100,000 times. From these scrambled data, the Pearson’s
correlation and mutual information were calculated be-
tween targets and the probability density functions were
taken as null distributions. The two-sided (Pearson’s correl-
ation) and one-sided (mutual information) 99 % confidence
intervals were identified as thresholds (Fig. 3¢ & d; blue ver-
tical lines). For the spatially-conditioned data, relationships
with a statistical association exceeding these thresholds
(Additional file 6: Table S1) were considered as evidence
against the null hypothesis that the statistical associations
are independent of spatial conditioning (p < 0.01).

Estimating cytoplasmic-to-nuclear volume ratio

Scripts were written using MATLAB to manually input
sample points that demarcate the edge of cellular domains
at various z-positions through the image data. A series of
image processing functions were applied to: connect these
data points and fill the selected area, smooth edges and
subtract the nucleus from the cytoplasm, and interpolate
the segmented areas between z-positions to produce a volu-
metric segmentation. From these data, the volume ratio of
cytoplasm-to-nucleus was calculated for a number of cells
across the depth of the epidermis, as shown in Additional
file 10: Figure S10 in cyto_nuc_ratios_edit.png.

Mathematical modeling

An SBML [64] implementation of the model has been
deposited in BioModels Database [65] and assigned the
identifier MODEL1503270000. Scripts used in this pro-
ject, including SED-ML [66] to execute the model at dif-
ferent spatial positions and reproduce results from this
paper are available from http://sourceforge.net/projects/
EpidermalERKMAPK/.
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The reaction kinetic diagram describing the signaling
processes (Additional file 7: Figure S1 in reaction_net-
work.png), and the simplified version of the network
used for the model (Fig. 1d) were drawn as SBGN [67]
process diagrams using VANTED [68]. To prevent over-
parameterization of the model, indirect signaling processes
that involve unmeasured components were ‘collapsed’
into a single arc. For example: Ca** is a direct input to
phospho-Raf-1 within the model, as intermediate variables
such as Ras-GTP were not measured; and similarly the
role of nuclear phospho-ERK-1/2 in promoting its own
dephosphorylation is modeled as a self-interaction, as the
induced phosphatase DUSP4 was not measured.

Three types of interactions between species were used to
construct the mathematical model:

1 Activation: Represented with a normalized activating
Hill function [43]:

_ BX"
KT+ X"

faee(X) (1.1)

where B and K are constrained such that f,..(0) =0,
foct(ECso) = 0.5 and f,(1) = 1. ECs is the fractional
activation of an input species at which a half-
maximal activation of an output species is induced;

2. Inhibition: Represented as the negative of activation;

3. Dephosphorylation: Represented as the product of
inhibition with the fractional activation of the output
species, as the abundance of the output species
determines the maximal level of dephosphorylation
that can occur.

In addition, shuttling between the cytoplasmic and nuclear
compartments was modeled to be linearly proportional to
the fractional activations of the species in the respective
compartments. Pathway crosstalk was implemented by sum-
ming individual species interactions. Using this approach,
the ERK-MAPK signaling network in Fig. 1d was repre-
sented with the following differential equations:

SMEKnc )

SERKnc )

dRafc 1
dtf = e ( max (wcmRafcfuct(Ca)—WCaMRafoM(CaMm)—wERKc,Rﬂfcfact (ERKc¢), O)Rozfcmax —Rafc)
ajc
dMEK 1
c__ 4 (wRﬂfCAMEch ot (Rafe) MEK ¢iax—MEKc—$pexen MEKc + ——— MEKn
dA/flEtK i | ’
n_ (- MEKn—Syzx60e MEKn + rsypxenMEKC)
e T
¢ = (WMEKC ERKQfact (MEI(C)ERI(CmaX—ERKC—SER[(C,,ERI(C + ——ERKn
dt TERKe ' r
dERKn 1
dt TERKn

= ((Watzgn, ERKS et (MEKN) =W gRkin ERKnf gt (ERK) ERK1) .ERK Hinax— ERKn—Sgiinc ERKn + rSgRien ERKC)

(1.2)
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where: state variables Ca, CaM, Rafc, MEKc, MEKn,
ERKc and ERKn represent fractional activation of tissue
Ca®*, plasma membrane CaM, cytoplasmic phospho-Raf-1,
cytoplasmic phospho-MEK-1/2, nuclear phospho-MEK-1/
2, cytoplasmic phospho-ERK-1/2, and nuclear phospho-
ERK-1/2, respectively (note only active/phosphorylated
ERK-MAPK components were examined in this study—
although immunofluorescence data were collected for
the non-phosphorylated forms, technical issues for
MEK in particular prevented their inclusion within the
quantitative modeling, as illustrated in Additional file
11: Figure S9 in MEK.png); 7 is the time constant for a
given species; w is the reaction weight; X, is the maximal
fractional activation of species; sxc., and sxn. are the
cytoplasmic-nuclear and nuclear-cytoplasmic shuttling
parameters for species X, respectively; and r is the
cytoplasmic-nuclear volume ratio. In the equation gov-
erning cytoplasmic phospho-Raf-1 activity, the max func-
tion was incorporated to enforce that the inhibitory effects
of plasma membrane CaM and cytoplasmic phospho-
ERK-1/2 do not escalate into dephosphorylation effects in-
stead (i.e. these inhibitions can only negate the activating
effect of extracellular Ca**, but cannot reduce fractional
activation of cytoplasmic phospho-Raf-1). The scaling
by r of the shuttling terms was to account for volume
effects between the cytoplasm and nucleus. The cytoplas-
mic-nuclear volume ratio was set to vary linearly from
2 (deep) to 5 (superficial), as derived from the immuno-
fluorescence data (Additional file 10: Figure S10 in
cyto_nuc_ratios_edit.png).

Default parameters were used for the normalized Hill
differential equations (n=1.4, EC50=0.5 7 = 1, w=1
and X, =1) [43]. MEK and ERK shuttling parameters
(smEKen = 0.05, SMEKne = 0.5, SErken = 0.01 and Sgrine =
0.01) were selected to reflect experimentally-determined
ratios of cytoplasm-to-nucleus and nucleus-to-cytoplasm
transport coefficients [27]. It is difficult to directly
reconcile the parameter values derived for reaction kin-
etic models of individual cells undergoing rapid transient
changes, and those used here for examining quasi-steady
state changes over an extended timescale. One would
expect similar shuttling rates associated with biochem-
ical features, such as the nuclear export sequence on
MEK [69]. There may be differences, however, as the
HeLa cells used by Fujioka et al. [27] are derived from
an adenocarcinoma and thus likely express different
levels of scaffolding molecules/co-factors which vary
between tissues [25, 70]. These issues highlight the need
for studies which examine these signaling pathways within
normal cells and homeostatic tissues.

The cell-autonomous signaling model (above) is driven
by spatial profiles of extracellular Ca®* and plasma mem-
brane CaM activation levels across the epidermis. The Ca®
*profile was modeled based on a previous experimental
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report [11] and CaM based on our own immunofluor-
escence data respectively as:

_ d/5  for de0,5)
Ca=bcatacay 7 )2 for dels.7
(d+1)/2 for del0,1)
CaMm= bcam + acam{ 19 for de[l,5)
0 for de[5,7]
(1.3)

where: b and a are the baseline levels and amplitudes of
the input fractional activations respectively (Table 2);
d specifies the spatial partition (i.e. depth) within the
epidermis.

A least-squares fit to the aggregate cytoplasmic and
nuclear phospho-ERK-1/2 immunofluorescence data was
performed with the MATLAB 1sgnonlin and polyfit
functions to optimize values of b and a. Differential equa-
tions were implemented in MATLAB (v7.12; R2011b) and
solved numerically for each spatial partition using the
ode23 function to find the steady-state (50 time units, with
a time step of 0.1 time units).

Additional files

Additional file 1: Figure S2. Human epidermis (Patient Two) labeled
against phospho-Raf-1 (pS338) using immunofluorescence labeling with
confocal microscopy imaging. (a, b) Immunofluorescence images are
displayed together with (c) a surface rendering of the signal intensity
within a suprabasal keratinocyte. The z-score normalized sampled signal
intensity data (data points; plotted relative to the sample mean, {i; and
sample standard deviation, 6) and loess smoothed signals (solid lines)
associated with the (d) cytoplasm and (f) nuclei are displayed for Patient
One (red), Two (green) and Three (blue), together with the 90 %
confidence interval for positive and negative residuals (dashed lines), and
the sampled data clouds for Patient Two. Histograms of the discretized
signal intensity within the (e) cytoplasm and (g) nucleus across individual
spatial divisions are shown, together with the associated loess-curves
(magenta line). The regions displayed in (b) and (c) are highlighted within
(a) by the white and orange dashed lines, respectively. Image data have
undergone a non-linear transformation to improve visual appearance.

Additional file 2: Figure S3. Human epidermis (Patient Two) labeled
against phospho-MEK-1/2 (pS218/pS222) using immunofluorescence
labeling with confocal microscopy imaging. (a, b) Immunofluorescence
images are displayed together with (c) a surface rendering of the signal
intensity within suprabasal keratinocytes). The z-score normalized
sampled signal intensity data (data points; plotted relative to the sample
mean, [i; and sample standard deviation, 0) and loess smoothed signals
(solid lines) associated with the (d) cytoplasm and (f) nuclei are displayed
for Patient One (red), Two (green) and Three (blue), together with the

90 % confidence interval for positive and negative residuals (dashed
lines), and the sampled data clouds for Patient Two. Histograms of the
discretized signal intensity within the (e) cytoplasm and (g) nuclei across
individual spatial divisions are shown, together with the associated
loess-curves (magenta line). The regions displayed in (b) and (c) are
highlighted within (a) by the white and orange dashed lines, respectively.
Scale bars represent 10 um. Image data have undergone a non-linear
transformation to improve visual appearance. Basal cells with a
relatively-high phospho-MEK-1/2 signal intensity are highlighted

(red arrowhead).
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Additional file 3: Figure S4. Human epidermis (Patient One) labeled
against phospho-ERK-1/2 (pT183/pY185) using immunofluorescence
labeling with confocal microscopy imaging. (a, b) Immunofluorescence
images are displayed together with (c) a surface rendering of the signal
intensity within a suprabasal keratinocyte). The z-score normalized sampled
signal intensity data (data points; plotted relative to the sample mean, ;
and sample standard deviation, 0) and loess smoothed signals (solid lines)
associated with the (d) cytoplasm and (f) nuclei are displayed for Patient
One (red), Two (green) and Three (blue), together with the 90 % confidence
interval for positive and negative residuals (dashed lines), and the sampled
data clouds for Patient One. Histograms of the discretized signal intensity
within the (e) cytoplasm and (g) nuclei across individual spatial divisions are
shown, together with the associated loess-curves (magenta line). The
regions displayed in (b) and (c) are highlighted within (a) by the white and
orange dashed lines, respectively. Scale bars represent 10 pm. Image data
have undergone a non-linear transformation to improve visual appearance.

Additional file 4: Figure S5. Human epidermis (Patient One) labeled
against calmodulin using immunofluorescence labeling with confocal
microscopy imaging. (a, b) Immunofluorescence images are displayed
together with (c) a surface rendering of the signal intensity and (d) an
isosurface volume rendering of a basal keratinocyte. The z-score
normalized sampled signal intensity data (data points; plotted relative to
the sample mean, i; and sample standard deviation, 6) and loess
smoothed signals (solid lines) associated with the (e) cytoplasm, (g)
nuclei and (i) plasma-membrane are displayed for Patient One (red), Two
(green) and Three (blue), together with the 90 % confidence interval for
positive and negative residuals (dashed lines), and the sampled data
clouds for Patient One. Histograms of the discretized signal intensity
within the (f) cytoplasm, (h) nuclei and (j) plasma membrane across
individual spatial divisions are shown, together with the associated
loess-curves (magenta line). The regions displayed in (b) and (c, d) are
highlighted within (a) by the white and orange dashed lines, respectively.
Scale bars represent 10 um. Image data have undergone a non-linear
transformation to improve visual appearance.

Additional file 5: Figure S6. Absolute thickness of epidermal tissue
layers: (a) Basal Layer; (b) Spinous and Granular Layers; (c) Transitional
Layer; (d) Total Epidermis. Some variation in the thickness of epidermal
tissue layers was observed between patients. To examine this in a
quantitative manner, a script was written in MATLAB to move along the
lower boundary of each tissue layer and for every unique pixel to
measure the minimum distance to the upper boundary (Fig. 2). These
results were aggregated over all z-positions and target proteins/
phospho-proteins, to estimate the distribution of epidermal tissue layer
absolute thickness (um) for Patient One (red), Two (green) and Three
(blue). Note that the ‘peakiness’ of these distributions can be attributed
to the aggregation of different z-positions and target proteins (with
minor intra-patient variation for the epidermal thickness between tissue
sections).

Additional file 6: Table S1. Statistical associations between
spatially-conditioned protein abundances used in this study. Statistical
associations are italicized if they failed to exceed the data-derived
significance thresholds of 0.469 for mutual information, and —0.284 and
0.286 for Pearson’s correlation. As shown in Fig. 3c & d, several
relationships between the spatially-conditioned protein abundance data
had a statistical association exceeded the data-derived threshold. The
canonical interactions between (i) cytoplasmic phospho-Raf and
phospho-MEK, and (i) cytoplasmic phospho-MEK and phospho-ERK had
relatively high mutual information and a positive Pearson’s correlation
which was particularly strong for (ii). Relationships that reflect
nucleocytoplasmic shuttling interactions were also relatively consistent
with the known molecular translocation events with ERK-MAPK signal
transduction; exceeding the data-derived thresholds for (iii)
phospho-ERK-1/2 and (iv) phospho-MEK-1/2, but falling below these
thresholds for (v) phospho-Raf-1.

Additional file 7: Figure S1. A reaction kinetic scheme of the
ERK-MAPK signaling cascade as modeled in this study. The spatial
position within the epidermis modulates the relative abundance of Ca**
and plasma-membrane calmodulin. Ca®* activates Ras-GTP signaling,
while CaM inhibits signal transduction from Ras-GTP to phosphorylated

(pS338) Raf-1 (details given within the main text). The ERK-MAPK signaling
cascade with Raf-1 phosphorylating and activating MEK-1/2, which
phosphorylates ERK-1/2 is illustrated within the nucleus and cytoplasm;
with nucleocytoplasmic shuttling reactions represented by corresponding
reactions (dashed lines). Cytoplasmic phospho-ERK-1/2 phosphorylates
Raf-1 to inhibit upstream signaling, while nuclear phospho-ERK-1/2
induces the expression of nuclear-localized DUSP4 which promotes
ERK-1/2 dephosphorylation. Note that many of the species listed in this
model were not measured, and due to the large number of unknown
kinetic parameters associated with each reaction (including absolute
phospho-protein concentrations), a simplified model was constructed
using a normalized Hill differential equation approach (Fig. 1d).

Additional file 8: Figure S7. Model simulation in the absence of
calmodulin-mediated inhibition of Raf. To test the effects of removing
calmodulin-mediated inhibition of phospho-Raf-1, the "Hill function
weight parameter’ corresponding to this reaction was set to zero using
SED-ML, and the model was evaluated at different spatial positions
through the epidermis. Note that in comparison to Fig. 4, the relative
abundance of phosphorylated ERK-MAPK is increased, and the profile of
activation is much more linear, following the Ca’t gradient (at top left). A
SED-ML script to perform this simulation is included within the packaged
SourceForge code.

Additional file 9: Figure S8. Immunofluorescence data derived from
whole-cell segmentation. The probability distribution function (p.d.f) for
phospho-MEK signal intensity within the (a) cytoplasm and (b) nucleus of
segmented cells. Line color ranges from blue to red, corresponding to
the increasing normalized distance value of nucleus centroids. Violin plots
are also presented for the phospho-MEK signal intensity within the (c)
cytoplasm and (d) nucleus of segmented cells, ordered along the x-axis
by their normalized distance values (note the blue dashed vertical lines
which demarcate the tissue layers, as labeled at bottom of (d), and green
dashed lines which highlight ‘phospho-MEK bright basal cells’). Surface
renderings of the p.d.f for phospho-MEK signal intensity within the cell
(e) cytoplasm and (f) nucleus of segmented cells, plotted perpendicular
to the normalized distance values of nuclei centroids (note the plots in
surface renderings of the p.d.f are analogous to the ‘whole data clouds
segmented by spatial position’, as shown in Additional file 2: Figure S3e
and S3g in pMEK.png).

Additional file 10: Figure S10. Gradient of keratinocyte
cytoplasmic-to-nuclear ratio over the depth of the epidermis. A collection
of interfollicular keratinocytes were segmented across multiple z-positions
within several immunofluorescence data sets, as described in Materials
and methods-Estimating cytoplasmic-to-nuclear volume ratio. A linear
gradient of increasing cytoplasmic-to-nuclear volume ratio was applied
across the depth of the epidermis, increasing from 2 to 5. Note the high
degree of variance within the basal layer (Normalized Distance 0-1),
which we believe is caused by proliferative cells growing at different
stages of the cell cycle.

Additional file 11: Figure S9. Human epidermis (Patient One) labeled
against MEK-1/2 using immunofluorescence labeling with confocal
microscopy imaging. (a, b) Immunofluorescence images are displayed
together with (c) a surface rendering of the signal intensity within
suprabasal keratinocytes. The z-score normalized sampled signal intensity
data (data points; plotted relative to the sample mean, {i; and sample
standard deviation, 0) and loess smoothed signals (solid lines) associated
with the (d) cytoplasm and (f) nuclei are displayed for Patient One (red),
Two (green) and Three (blue), together with the 90 % confidence interval
for positive and negative residuals (dashed lines), and the sampled data
clouds for Patient One. Histograms of the discretized signal intensity
within the (e) cytoplasm and (g) nuclei across individual spatial divisions
are shown, together with the associated loess-curves (magenta line). The
regions displayed in (b) and (c) are highlighted within (a) by the white
and orange dashed lines, respectively. Scale bars represent 10 um. Image
data have undergone a non-linear transformation to improve visual
appearance. NB: the cytoplasmic fluorescence signal intensity (d) shows a
strong decrease over the spinous and granular layers, particularly for
Patient Two (green) and Three (blue). The inverse pattern for
non-phosphorylated MEK-1/2 abundance relative to phospho-MEK-1/2
(Additional file 2: Figure S3d in pMEK.png) indicated that upon pS218/
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pS222 phosphorylation of MEK-1/2, there may have been masking of the
epitope recognized by our total MEK-1/2 antibody. Testing this
hypothesis is difficult and beyond the scope of our study, thus we
excluded the non-phosphorylated/total ERK-MAPK components from the
quantitative modeling.
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