2,164 research outputs found

    Sunitinib mediates mitochondrial ROS production in adult rat cardiac fibroblasts via CaMKII oxidation

    Get PDF
    Ca2+/calmodulin dependent protein kinase II (CaMKII) is a central mediator of Ca2+-induced signalling in the heart and regulates both normal cardiac physiology and pathology. Sunitinib malate is an oral Type I tyrosine kinase inhibitor (TKI) known to inhibit more than 50 kinases, with anti-angiogenic and anti-proliferative effects affiliated with off-target cardiotoxicity. Previous work has shown that chronic sunitinib treatment significantly increases CaMKII expression and activity and this correlates with significant cardiac dysfunction in vivo.1 Mitochondrial dysfunction, mediated by increased mitochondrial Ca2+ and resultant mitochondrial ROS production, has been proposed as an underlying mechanism for TKI-induced cardiotoxicity in cardiomyocytes.2 However, little is known of how TKIs may affect the non-contractile cells of the heart. Here, we have investigated whether sunitinib treatment increases mitochondrial ROS production in cardiac fibroblasts (CF) and whether CaMKII may play a role in this potential cardiotoxic mechanis

    Aspergillus mastoiditis, presenting with unexplained progressive otalgia, in an immunocompetent (older) patient

    Get PDF
    Aspergillus mastoidits and skull-base osteomyelitis are extremely rare, even in immunocompromised patients. We report a case of an 81-year-old immunocompetent man, who underwent a mastoidectomy because of unexplained, progressive otalgia in spite of a noninflamed and air-containing middle-ear space. Histopathology yielded Aspergillus fumigatus. When confronted with otitis with an unexpected clinical course a high index of suspicion is required to facilitate early diagnosis and appropriate therapy of a potential lethal Aspergillus infection, even in immunocompetent patients. This seems to be more so in older patients with an open middle-ear cavity and/or when there is facial nerve involvement

    CaMKIIδ interacts directly with IKKβ and modulates NF-κB signalling in adult cardiac fibroblasts

    Get PDF
    Calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) acts as a molecular switch regulating cardiovascular Ca2+ handling and contractility in health and disease. Activation of CaMKIIδ is also known to regulate cardiovascular inflammation and is reported to be required for pro-inflammatory NF-κB signalling. In this study the aim was to characterise how CaMKIIδ interacts with and modulates NF-κB signalling and whether this interaction exists in non-contractile cells of the heart. Recombinant or purified CaMKIIδ and the individual inhibitory -κB kinase (IKK) proteins of the NF-κB signalling pathway were used in autoradiography and Surface Plasmon Resonance (SPR) to explore potential interactions between both components. Primary adult rat cardiac fibroblasts were then used to study the effects of selective CaMKII inhibition on pharmacologically-induced NF-κB activation as well as interaction between CaMKII and specific IKK isoforms in a cardiac cellular setting. Autoradiography analysis suggested that CaMKIIδ phosphorylated IKKβ but not IKKα. SPR analysis further supported a direct interaction between CaMKIIδ and IKKβ but not between CaMKIIδ and IKKα or IKKγ. CaMKIIδ regulation of IκΒα degradation was explored in adult cardiac fibroblasts exposed to pharmacological stimulation. Cells were stimulated with agonist in the presence or absence of a CaMKII inhibitor, autocamtide inhibitory peptide (AIP). Selective inhibition of CaMKII resulted in reduced NF-κB activation, as measured by agonist-stimulated IκBα degradation. Importantly, and in agreement with the recombinant protein work, an interaction between CaMKII and IKKβ was evident following Proximity Ligation Assays in adult cardiac fibroblasts. This study provides new evidence supporting direct interaction between CaMKIIδ and IKKβ in pro-inflammatory signalling in cardiac fibroblasts and could represent a feature that may be exploited for therapeutic benefit

    Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations

    Get PDF
    Abstract Health care-associated infections (HAI) are a major public health problem with a significant impact on morbidity, mortality and quality of life. They represent also an important economic burden to health systems worldwide. However, a large proportion of HAI are preventable through effective infection prevention and control (IPC) measures. Improvements in IPC at the national and facility level are critical for the successful containment of antimicrobial resistance and the prevention of HAI, including outbreaks of highly transmissible diseases through high quality care within the context of universal health coverage. Given the limited availability of IPC evidence-based guidance and standards, the World Health Organization (WHO) decided to prioritize the development of global recommendations on the core components of effective IPC programmes both at the national and acute health care facility level, based on systematic literature reviews and expert consensus. The aim of the guideline development process was to identify the evidence and evaluate its quality, consider patient values and preferences, resource implications, and the feasibility and acceptability of the recommendations. As a result, 11 recommendations and three good practice statements are presented here, including a summary of the supporting evidence, and form the substance of a new WHO IPC guideline

    Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background

    Get PDF
    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability

    Structure and dynamics of the shark assemblage off recife, northeastern Brazil

    Get PDF
    Understanding the ecological factors that regulate elasmobranch abundance in nearshore waters is essential to effectively manage coastal ecosystems and promote conservation. However, little is known about elasmobranch populations in the western South Atlantic Ocean. An 8-year, standardized longline and drumline survey conducted in nearshore waters off Recife, northeastern Brazil, allowed us to describe the shark assemblage and to monitor abundance dynamics using zero-inflated generalized additive models. This region is mostly used by several carcharhinids and one ginglymostomid, but sphyrnids are also present. Blacknose sharks, Carcharhinus acronotus, were mostly mature individuals and declined in abundance throughout the survey, contrasting with nurse sharks, Ginglymostoma cirratum, which proliferated possibly due to this species being prohibited from all harvest since 2004 in this region. Tiger sharks, Galeocerdo cuvier, were mostly juveniles smaller than 200 cm and seem to use nearshore waters off Recife between January and September. No long-term trend in tiger shark abundance was discernible. Spatial distribution was similar in true coastal species (i.e. blacknose and nurse sharks) whereas tiger sharks were most abundant at the middle continental shelf. The sea surface temperature, tidal amplitude, wind direction, water turbidity, and pluviosity were all selected to predict shark abundance off Recife. Interspecific variability in abundance dynamics across spatiotemporal and environmental gradients suggest that the ecological processes regulating shark abundance are generally independent between species, which could add complexity to multi-species fisheries management frameworks. Yet, further research is warranted to ascertain trends at population levels in the South Atlantic Ocean.State Government of Pernambuco, Brazil; Fundacao para a Ciencia e Tecnologia, Portugal [SFRH/BD/37065/2007]info:eu-repo/semantics/publishedVersio

    Ethological principles predict the neuropeptides co-opted to influence parenting

    Get PDF
    Ethologists predicted that parental care evolves by modifying behavioural precursors in the asocial ancestor. As a corollary, we predict that the evolved mechanistic changes reside in genetic pathways underlying these traits. Here we test our hypothesis in female burying beetles, Nicrophorus vespilloides, an insect where caring adults regurgitate food to begging, dependent offspring. We quantify neuropeptide abundance in brains collected from three behavioural states: solitary virgins, individuals actively parenting or post-parenting solitary adults and quantify 133 peptides belonging to 18 neuropeptides. Eight neuropeptides differ in abundance in one or more states, with increased abundance during parenting in seven. None of these eight neuropeptides have been associated with parental care previously, but all have roles in predicted behavioural precursors for parenting. Our study supports the hypothesis that predictable traits and pathways are targets of selection during the evolution of parenting and suggests additional candidate neuropeptides to study in the context of parenting

    Molecular gas kinematics within the central 250 pc of the Milky Way

    Get PDF
    Using spectral-line observations of HNCO, N2H+, and HNC, we investigate the kinematics of dense gas in the central ~250 pc of the Galaxy. We present SCOUSE (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line fitting algorithm designed to analyse large volumes of spectral-line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, SCOUSE accurately describes the {l, b, v_LSR} distribution of CMZ gas, which is asymmetric about Sgr A* in both position and velocity. Velocity dispersions range from 2.6 km/s28. The gas is distributed throughout several "streams", with projected lengths ~100-250 pc. We link the streams to individual clouds and sub-regions, including Sgr C, the 20 and 50 km/s clouds, the dust ridge, and Sgr B2. Shell-like emission features can be explained by the projection of independent molecular clouds in Sgr C and the newly identified conical profile of Sgr B2 in {l ,b, v_LSR} space. These features have previously invoked supernova-driven shells and cloud-cloud collisions as explanations. We instead caution against structure identification in velocity-integrated emission maps. Three geometries describing the 3-D structure of the CMZ are investigated: i) two spiral arms; ii) a closed elliptical orbit; iii) an open stream. While two spiral arms and an open stream qualitatively reproduce the gas distribution, the most recent parameterisation of the closed elliptical orbit does not. Finally, we discuss how proper motion measurements of masers can distinguish between these geometries, and suggest that this effort should be focused on the 20 km/s and 50 km/s clouds and Sgr C
    corecore