
Original Paper

Demographic and Indication-Specific Characteristics Have Limited
Association With Social Network Engagement: Evidence From
24,954 Members of Four Health Care Support Groups

Trevor van Mierlo1,2*, MScCH, MBA, GEMBA, MSc BMR; Xinlong Li3*, MSc; Douglas Hyatt3*, PhD; Andrew T
Ching3*, PhD
1Research Associate, Henley Business School, University of Reading, Henley-on-Thames, United Kingdom
2Evolution Health Systems Inc, Toronto, ON, Canada
3Rotman School of Managment, University of Toronto, Toronto, ON, Canada
*all authors contributed equally

Corresponding Author:
Trevor van Mierlo, MScCH, MBA, GEMBA, MSc BMR
Research Associate
Henley Business School
University of Reading
Greenlands
Henley-on-Thames, RG93AU
United Kingdom
Phone: 44 1491 571454
Fax: 44 1491 571454
Email: tvanmierlo@evolutionhs.com

Abstract

Background: Digital health social networks (DHSNs) are widespread, and the consensus is that they contribute to wellness by
offering social support and knowledge sharing. The success of a DHSN is based on the number of participants and their consistent
creation of externalities through the generation of new content. To promote network growth, it would be helpful to identify
characteristics of superusers or actors who create value by generating positive network externalities.
Objective: The aim of the study was to investigate the feasibility of developing predictive models that identify potential superusers
in real time. This study examined associations between posting behavior, 4 demographic variables, and 20 indication-specific
variables.
Methods: Data were extracted from the custom structured query language (SQL) databases of 4 digital health behavior change
interventions with DHSNs. Of these, 2 were designed to assist in the treatment of addictions (problem drinking and smoking
cessation), and 2 for mental health (depressive disorder, panic disorder). To analyze posting behavior, 10 models were developed,
and negative binomial regressions were conducted to examine associations between number of posts, and demographic and
indication-specific variables.
Results: The DHSNs varied in number of days active (3658-5210), number of registrants (5049-52,396), number of actors
(1085-8452), and number of posts (16,231-521,997). In the sample, all 10 models had low R2 values (.013-.086) with limited
statistically significant demographic and indication-specific variables.
Conclusions: Very few variables were associated with social network engagement. Although some variables were statistically
significant, they did not appear to be practically significant. Based on the large number of study participants, variation in DHSN
theme, and extensive time-period, we did not find strong evidence that demographic characteristics or indication severity sufficiently
explain the variability in number of posts per actor. Researchers should investigate alternative models that identify superusers or
other individuals who create social network externalities.
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Introduction

Background
Digital health social networks (DHSNs), otherwise known as
discussion forums or peer-to-peer support groups, are in
abundance [1-8]. Although the efficacy of these networks is
still being evaluated, the consensus is that social support and
knowledge sharing increase patient education, enhance
self-management, and decrease burden on existing health
services [9-16].

In an era of increasing health costs [17,18], an aging population
[19-22], and an annual US $300 billion adherence problem
[23-26], DHSNs are beginning to play an important role in
improving the delivery of North American health services
[27,28].

As we increasingly rely on technology to help us look after our
health, management science is playing a greater role in using
data to measure efficiencies [29-31]. In the case of DHSNs,
analysis is now turning to mechanisms that drive growth, help
attain sustainability, and generate positive network externalities.

Research on Social Network Structure, Growth, and
Sustainability
As a discipline, social network theory (SNT) maps social capital
and the strength of relationships in networks. Within a network,
nodes are individual actors, and ties are the relationships
between nodes. For decades, disciplines such as economics,
political science, public health, marketing, and finance have
analyzed real world relationships within networks of actors
[32-37]. These studies typically leverage graph theory,
sociograms, or stochastic models to examine relationships
[38-40].

Recently, SNT has shifted toward the topology of scale-free
networks. This stream of research investigates whether network
growth is random, if networks evolve, follow encoded and
organized principles [41-46], and if taxonomies of actors
naturally exist [47-51].

Three Fundamentals of Digital Health Social Networks
In the context of this study, actors are DHSN registrants who
have created, at minimum, 1 post. From this perspective, 3
fundamental principles guide network growth.

The first is the network’s total number of posts. In most DHSNs,
actor posts remain on the network, and each new post adds to
the quantitative size and value of the community. Whether actors
passively read, actively respond to, or agree or disagree with
new content, the quantitative value of the network n increased
with each new post by n +1. In management and economics
literature this is referred to as positive network externalities
[52].

Second is the number of actors in the network. If a network
contains x actors, potential connections between actors is x
(x−1). The greater the number of actors, the greater the potential
for network expansion and the generation of new externalities.
This has been illustrated in the study of networks in demand-side
economies, where the value of a product or service is directly
related to the number of others who use it [53,54].

Third, the mathematical relationship between these 2 quantities
(positive network externalities and number of actors) represents
a power law [55-57]. Marketing experts have observed this
phenomenon and have intuitively referred to it as the 1% rule
or the 90-9-1 principle [58,59]. Both concepts are related to the
Pareto principle [60], and applied empirically, they have shown
to be intrinsic to social network structure [61-63].

Monitoring nodes and ties, and monitoring topologies are
important considerations for those who manage social networks.
However, these tasks are retrospective as they examine a
network’s past state. Methods to drive future growth and
promote individual agency are required. As the creation of
externalities governs the success of a network, it would be
helpful to profile actors who create value by generating
externalities [64].

The Interventions
The 4 interventions in this study [65-68] contained self-guided
interactive behavior change treatment programs based on
state-of-the-art best practice, and have been examined
extensively in the literature [69-83]. A component of each of
the interventions is a DHSN moderated by trained and paid
employees. All posts are reviewed and approved by a moderator,
and any post that does not address the indication is permanently
removed. Moderators can also instantaneously communicate
with all actors. Table 1 outlines each program’s theoretical
constructs and evidence base.
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Table 1. Theoretical constructs and evidence-base.

Smoking cessationPanic disorderDepressive disorderProblem drinkingTheoretical construct

XXXXBrief intervention [84]

XXCognitive behavioral therapy [85]

XXXXGamification [86]

XXHarm reduction [87]

XXXXHealth belief model [88]

XXXXMotivational interviewing [89]

XXNormative feedback [90]

XXXXSocial cognitive theory [91]

XStructured relapse prevention [92]

XXTargeting and tailoring [93]

XTranstheoretical model [94]

Table 2 outlines intervention launch dates, data acquisition
dates, number of registrants, number of actors, total posts, and

number of subjects used in analysis from their intervention
DHSN inception until December 31, 2015.

Table 2. Four social networks.

Number of subjects
in analysis, n (%)a

Number of actor
postsa

Number of actors,
n (%)

Number of sub-
jects registered in
program

Number of
days active

Data acquisition
date

Social network
launch date

Social network

4784 (94.75)16,2311085 (21.49)50493658Dec 31, 2015Dec 26, 2005Problem
drinking

1958 (16.77)20,5162065 (17.69)11,6754712Dec 31, 2015Feb 6, 2003Depressive
disorder

6151 (62.87)61,7433579 (36.58)9783591Dec 31, 2015January 23, 2002Panic disorder

12,061 (23.01)521,9978452 (16.13)52,3965210Dec 31, 2015Sep 26, 2001Smoking
cessation

25,178 (31.91)620,48715,181 (19.24)78,90318,671n/an/abTotal

6239 (31.63)155,1223795 (19.24)19,7264688n/an/aMean

aModerator posts removed.
bn/a: not applicable.

Data Collected at Registration
Demographic characteristics (age, gender, highest level of
education obtained, current occupation), and indication-specific

details (Table 3) were collected at registration. Program
registration and participation were free; however, consenting
to the use of personal data for research purposes was a
requirement.
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Table 3. Indication-specific data collected at registration.

MeasurementIndication-specific dataIntervention

Drop-down menu 0-30+Average drinks per dayProblem drinking

Likert scaleProgram goal: cut down, stop, unsure

Likert scale 0-10Depression rating over past 2 weeksDepressive disorder

Likert scale 0-10Level of distress over past 2 weeks

Likert scale 0-10Level of interference over past 2 weeks

Yes or noTried cognitive behavior therapy in the past

Yes or noCurrently being treated

Yes or noUsing program with health care professional

Drop-down menu 0-51+Number of attacks over past 2 weeksPanic disorder

Likert scale 0-10Average fear rating during attack

Drop-down menu 0-4Attack interference with average daily life

Drop-down menu 0-4Attack causing avoidance

Yes/NoTried cognitive behavior therapy in the past

Yes/NoUse of program with health care professional

Drop-down menuSmoking patterns: ≥ 1 cigarette per day, occasional smoker, recently quitSmoking cessation

Radio buttonLast cigarette: >24 hours, <24 hours

Drop-down menu 0-100+Cigarettes per day

Drop-down menu 0-75+Total years smoked

Drop-down menuMinutes to first cigarette: >60, 31-60, 6-31, ≤5

Drop-down menu 0-10+Past year quit attempts > 24 hours

Drop-down menu 0-10+Number of cohabitant smokers

Internal calculationFagerstrom dependency score (very low, low, moderate, high, very high)

Objective
As a first step in profiling actors based on characteristics, and
to investigate the feasibility of developing predictive models
that identify superusers in real time, the objective of this study
was to examine the association between number of posts and
actor demographic and indication-specific variables inputted at
registration.

Methods

Sample
Data were extracted from the custom SQL DHSN databases of
the 4 digital health interventions. As they contained full data
sets, samples totaling 24,954 registrants and 3285 actors were
used in the analysis (Table 4).

Table 4. Sample size.

Sample size postsSample size actorsSample sizeIntervention

12,9148844484Problem drinking

31902061958Depressive disorder

18,9215856151Panic disorder

90,894161012,061Smoking cessation

125,919328524,954Total sample

Regression Models
A total of 5 models were developed to explore whether posting
behavior was associated with demographics characteristics and
indication-specific severity amongst all registrants (Table 5).
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Table 5. Regression models for all subjects.

EquationModel

ProblemDrinkingPostsAllRegistrants = β0+ β1Age + β2Gender + β3Education + β4Occupation + β5DrinksPerDay + β6Goal + ϵ1

DepressiveDisorderPostsAllRegistrants = β0+ β1Age + β2Gender + β3Education + β4Occupation + β5Rating + β6Distress + β7Interference
+ β8CBT + β9Treated + β10Professional + ϵ

2

PanicDisorderPostsAllRegistrants = β0+ β1Age + β2Gender + β3Education + β4Occupation + β5Attacks + β6Fear + β7Interference +
β8Avoidance + β9CBT + β10Professional + ϵ

3

SmokingCessationPostsAllRegistrants = β0+ β1Age + β2Gender + β3Education + β4Occupation + β5Patterns + β6LastCigarette +
β7CigarettesPerDay + β8YearsSmoked + β9FirstCigarette+ β10PastQuits + β11CohabitantSmokers + β12FagerstromScore + ϵ

4

TotalPostsAllRegistrants = β0+ β1Age + β2Gender + β3Education + β4Occupation + ϵ5

Another 5 additional regression models were developed to
explore whether posting behavior was associated with

demographics characteristics and indication-severity amongst
actors (Table 6).

Table 6. Regression models for actors.

EquationModel

ProblemDrinkingPostsActors = β0+ β1Age + β2Gender + β3Education + β4Occupation + β5DrinksperDay + β6Goal + ϵ6

DepressiveDisorderPostsActors = β0+ β1Age + β2Gender + β3Education + β4Occupation + β5Rating + β6Distress + β7Interference + β8CBT
+ β9Treated + β10Professional + ϵ

7

PanicDisorderPostsActors = β0+ β1Age + β2Gender + β3Education + β4Occupation + β5Attacks + β6Fear + β7Interference + β8Avoidance
+ β9CBT + β10Professional + ϵ

8

SmokingCessationPostsActors = β0+ β1Age + β2Gender + β3Education + β4Occupation + β5Patterns + β6Last Cigarette + β7CigarettesPerDay
+ β8YearsSmoked + β9FirstCigarette + β10PastQuits + β11CohabitantSmokers + β12FagerstromScore + ϵ

9

TotalPostsActors = β0+ β1Age + β2Gender + β3Education + β4Occupation + ϵ10

Dummy variables were created for categorical data, with 1
dummy variable excluded during regressions. Analyses were
performed with Stata version 13 (Stata Corp LLP, College
Station, TX, USA).

As outlined in previous research conducted on the 4 DHSNs,
the number of posts per actor is right skewed, indicating the
presence of a power law [44]. Negative binomial regression
was employed as the method of analysis for 3 reasons. First,
the dependent variable in our model, number of observations,
is counted as integers only. Second, negative binomial regression
can capture the skewness of the data. Third, Poisson distribution
requires the mean and the variance of the model to be identical
and in each of the models, the hypothesis of equidispersion is
rejected.

Ethics
All data collection policies and procedures adhered to
international privacy guidelines [95-97] and were in accordance
with the Helsinki Declaration of 1975, as revised in 2008 [98].
The study was consistent with the University Research Ethics
Committee procedures at Henley Business School, University
of Reading, and was exempt from full review.

Results

R-Squared Values
All 5 models had low R2 values (see Table 7 and Multimedia
Appendix 1).

Regression Analysis: Demographic Variables
A total of 4 independent demographic variables were included
in each of the 10 models (Table 8).

In 9 of the models, age was positively and significantly
associated with number of posts (beta range =.13-.4). This means
that as age of registrants increased, number of posts increased
marginally.

Education was positively and significantly associated to the
number of posts in 6 models (beta range =.082-.315). This means
that within these 6 models, number of posts increases by less
than 1 with every unit increase in education category.

Gender was negatively and significantly associated number of
posts in 4 models (beta range =−.766 to −.272). This means that
within these 4 models, number of posts decreased by less than
1 with male registrants.

Registrants had the option of selecting from 1 of 12 occupations.
Compared with registrants who indicated that they were full-time
students, occupation was positively associated with number of
posts in 14 cases (beta range =.377-5.301), and negatively
associated with number of posts in 19 cases (beta range =-2.609
to -.587).

The variable occupation not listed was selected with the greatest
frequency 60% (6/10), and was positively and significantly
associated to the number of posts in 4 of these 6 models (beta
range =.488-.703), but negatively and significantly associated
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to the number of posts in 2 of these 6 models (beta range =−1.314 to −.945).

Table 7. R2 values for ten models.

10987654321Model

0.0310.0860.0610.0180.0270.0260.0430.020.0130.016R2

Table 8. Statistically significant demographic independent variables (all models).

Percentage
significant

Model 10
beta (P
value)

Model 9
beta (P
value)

Model 8
beta (P
value)

Model 7
beta (P
value)

Model 6
beta (P
value)

Model 5
beta (P
value)

Model 4
beta (P
value)

Model 3
beta (P
value)

Model 2
beta (P
value)

Model 1
beta (P
value)

Independent
variable

40−.365
(.005)

−.422
(.03)

−.766
(<.001)

−.272
(.001)

Gender

90.184
(<.001)

.285
(<.001)

.138
(.012)

.136
(<.001)

.322
(<.001)

.130
(.009)

.324
(<.001)

.234
(<.001)

.400
(<.001)

Age

60.139
(.008)

.095
(.01)

.082
(.002)

.195
(.001)

.315
(.001)

.146
(<.001)

Education

Occupation

Full-time student
(reference)

20−1.057
(<.001)

−.720
(.04)

Stay at home mom
or dad

20−1.675
(.002)

.546
(.004)

Management

50−.949
(.02)

−2.609
(.000)

.810
(.02)

−1.139
(.01)

−2.348
(.005)

Teacher or profes-
sor

40-.894
(.035)

.852
(.005)

.377
(.01)

.519
(.001)

Administrative, fi-
nancial or clerical
sales or service

10.532
(.003)

Technologist or
technical occupa-
tion

303.793
(<.001)

.400
(.04)

5.301
(<.001)

1.016
(<.001)

Farming, forestry,
fishing or mining

40−.696
(.05)

−.690
(<.001)

−1.047
(.007)

−1.564
(.02)

Trades, transport
or equipment oper-
ator

20−.641
(.001)

−.846
(.02)

Processing, manu-
facturing or utili-
ties

20−.587
(.02)

−.820
(.02)

.479
(.008)

Unemployed at
present or on work
leave

10−.856
(<.001)

Professional ser-
vices (eg, certified
accountant, lawyer,
doctor)

60.647
(.004)

−.945
(.001)

−1.314
(.002)

.488
(.001)

.825
(.001)

.703
(<.001)

Occupation not
listed
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Regression Analysis: Indication-Specific Variables
In total, 10 indication-specific variables were tested for their
association with posting behavior in the 2 addiction health
interventions (Table 9).

Problem Drinking Intervention
In the problem drinking intervention, registrants had the option
of selecting 1 of the 3 program goals. Compared with registrants

who indicated that they wanted to cut down, quit drinking was
positively and significantly associated with the number of posts
in model 2 (beta=.463, P=.02). The option not sure was
negatively and significantly associated with the number of posts
in model 2 (beta=−. 460, P=.02) and model 7 (beta=−.509,
P=.001).

Table 9. Statistically significant indication-specific independent variables (addiction interventions).

Model 10
beta (P val-
ue)

Model 5
beta (P
value)

Model 7
beta (P
value)

Model 2
beta (P
value)

Independent Variables

Goal

n/an/aaCut down (reference)

n/an/a.463
(.02)

Quit drinking

n/an/a−0.509
(.001)

−.460
(.02)

Not sure

Smoking patterns

.278
(.001)

n/an/a≥ one cigarette per day, occasional smoker, recently quit

.534
(.002)

n/an/aLast cigarette: >24 hours, <24 hours

n/an/aCigarettes per day

.025
(.001)

.040
(<.001)

n/an/aTotal years smoked

.625
(<.001)

.705
(<.001)

n/an/aMinutes to first cigarette: >60, 31-60, 6-31, ≤5

−.054
(.001)

−.048
(.02)

n/an/aPast year quit attempts > 24 hours

n/an/aNumber of cohabitant smokers

0.651
(<.001)

0.657
(.001)

n/an/aFagerstrom dependency score (very low, low, moderate, high, very high)

an/a: not applicable.

Smoking Cessation Intervention
In model 5, increased cigarette consumption (smoking patterns)
(beta=.278, P=.001) and having a cigarette within the past 24
hours (last cigarette) were positively and significantly associated
with posting behavior (beta=.534, P=.002).

In both models, increases in total years smoked (beta=.040,
P<.001; beta=.025, P=.001), decreases in minutes to first
cigarette (beta=.705, P=.002; beta=.625, P<.001), and higher
Fagerstrom dependency scores (beta=.657, P=.001; beta=.651,
P<.001) were positively and significantly associated with posting
behavior. Having a greater number of quit attempts was
negatively and significantly associated with posting (beta =
−.048, P=.02; −.054, P=.001).

Regression Analysis: Indication-Specific Variables in
Two Mental Health Interventions
Ten indication-specific variables were tested for their association
with posting behavior in the 2 mental health interventions.
Whether a participant had tried cognitive behavior therapy in
the past and was using of the program with a health care
professional were asked in both mental health interventions
(Table 10).

Past Cognitive Behavior Therapy Experience
In models 3, 4, and 9 posting behavior was positively and
significantly associated with experience with CBT (beta= .851,
P=.01; beta=1.118, P<.001; beta=.870, P<.001).
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Table 10. Statistically significant indication-specific independent variables (mental health).

Model 9
beta
(P value)

Model 4
beta
(P value)

Model 8
beta
(P value)

Model 3
beta
(P value)

Independent variables

n/an/aaDepression rating past 2 weeks (0-10)

n/an/aLevel of distress past 2 weeks (0-10)

n/an/aLevel of interference past 2 weeks (0-10)

n/an/aCurrently being treated

.870
(<.001)

1.118
(<.001)

.851
(.01)

Tried cognitive behavior therapy in the past

.054
(.03)

n/an/aNumber of attacks over past 2 weeks
Using program with a health care professional

−.099
(.01)

n/an/aAverage fear rating during attack

.224
(.01)

.406
(<.001)

n/an/aAttack interference in average daily life

n/an/aAttack causing avoidance

an/a: not applicable.

Depression Intervention
In the depression interventions, other than past CBT experience,
there were no statistically significant associations with posting
behavior.

Panic Disorder Intervention
In the panic disorder intervention, attacks interfering in average
daily life were positively and significantly associated with
posting behavior (beta=.406, P<.001; beta=.224, P=.01). In
model 4, increases in number of attacks over the past 2 weeks
were positively and significantly associated with posting
(beta=.054, P=.03), and in model 9 average fear rating during
an attack was negatively and significantly associated with
posting (beta=−.099, P=.01).

Discussion

Principal Findings
Despite observable statistically significant results in
demographic and indication-specific data, all regressions had
low R2 values, and their impact on superuser behavior was
minimal. As mentioned previously, all models fail to explain
the variance of the dependent variables.

Based on the results in 4 of the 10 models, females tend to post
more than males. However, these results should be interpreted
with caution as the impact was minimal (beta range=−.766 to
−.272) and only statistically significant in all subject models.
These results also do not confirm the gender of superusers.

Increased posting with age was positively and statistically
significant in 9 of the 10 models, although the increase is
negligible and should be interpreted with caution (beta
range=.130-.400). For example, the analysis did not consider

whether addiction treatment for smoking cessation, or if
treatment for mental health issues, also coincides with age.

Although the impact is minimal, increased education was related
to increases in posting behavior in 6 of the 10 models (beta
range=.082-.315). The issue of education level and use of
medical resources has a rich history in the literature and is
nonconclusive. For example, one might assume that actors with
higher levels should have better knowledge seeking skills and
make limited use of DHSNs, or conversely, that actors with
lower education levels and fewer formal resources would use
DHSNs with greater intensity.

A recent qualitative review on factors affecting therapeutic
compliance found the effect of education level to be equivocal
[99]. While some studies found that patients with higher levels
of education might have higher compliance, others found that
patients with lower levels of education or no formal education
were more compliant. The authors concluded that education
level was not a good predictor of therapeutic compliance, and
our findings reflect this in regards to education being associated
with posting.

In the smoking cessation intervention, inexperienced quitters
who have smoked longer, have increased dependency, and have
recently quit, tend to post more. This supports past research
indicating that the intervention’s DHSN primarily acts as a
relapse prevention tool for new quitters [45,82]. If this finding
is true it highlights the importance of detecting and supporting
superusers as they primarily respond to, and support, new users.

It was interesting to note that experience with cognitive behavior
therapy was associated with posting behavior in 3 of the 4
mental health models, though this impact was minimal (beta
range=.851-1.118).
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Future Research
The results of this study suggest that demographic or
indication-specific variables have limited association with the
creation of externalities in DHSNs. What, if anything, may be
associated with posting behavior? If superusers are key to the
growth and sustainability of DHSNs, how can they be detected?

The real-time assessment of phenotype, or observable traits
resulting from the interaction of an individual in an environment,
have recently been recognized as key to the next frontier of
medicine [100]. Phenotypes differ from demographic and
indication-specific data as they give insight on behavior.
Although traditionally difficult to detect, some phenotypes are
now being recognized through big data analysis.

For example, a recent study identified the ability to use natural
language processing to detect phenotypes in electronic health
records [101]. Another study found that an individual’s personal
attitudes including use of addictive substances, happiness, and
sexual orientation can be detected through Facebook likes [102],
and Instagram photos and Twitter feeds have been shown to
contain predictive markers of depression [103,104].

DHSN content may contain rich sources of phenotypes as an
post or an actor’s profile may include avatars, images, badges
or awards for participation, likes or other semiotic indicators of
support from other members, or links to specific outside
resources. Post content may be mined for specific keywords,
phrases, or even tone. Time of post, time between posts,
response to specific types of content or members, or other
time-based interactions may also be indicative of specific
behavior. Recent health care informatics research has also
identified a relationship between increased systems use and
outcomes, and a variety of unique system measures that may
help categorize behaviors [105].

A challenge is that even if phenotypes can be predicted,
risk-stratifying behavior may prove difficult. However, the
medication adherence literature, which generally classifies
patients as full compliers, partial compliers, or noncompliers
may give insights on categorizing behavior similar to
nonadherence [106] and research is beginning to investigate
indication-specific factors that categorize patients and their
motivations [107-110]. Future research into adherence to DHSNs
might also consider the feasibility of stratifying actors according
to real-time behavior.

In some respects, the low R2 values in the models and lack of
statistically significant variables in this study expose the

limitations of big data. Popular belief holds that large data sets
of survey data will contain insights and intelligence that have
been previously unobtainable [111-113], and the promise of big
data is so compelling that laymen are being encouraged to
experiment with sophisticated techniques that previously
required a high degree of training [114]. Whereas increased
knowledge and interdisciplinary training and collaboration are
certainly positive, as in this study, results from the analysis of
large datasets pertaining to specific demographic characteristics
or indication-specific variables may, at best, illustrate the
complexity of predicting human behavior.

Strengths and Limitations
The results of this study are from “real world” social networks
and the main strengths are the longevity of the DHSNs, the
number of posts, the 4 separate indications, and that 2 of the
social networks in the study were focused on mental health, and
the remaining 2 on addictions.

Ideally, data from this study would be derived from a
randomized controlled experiment. However, it would be
difficult, if not impossible, to recruit a study population and
execute a study in a similar sample. We are not aware of any
other study in the health care literature with such an extensive
and complete dataset, and as such, results should be interpreted
accordingly.

A strength and limitation is that the populations analyzed are
self-selecting populations that actively sought help. In the
context of this study it was helpful to have datasets of active
and engaged participants. However, these results may not be
indicative of populations of patients in health plans, hospital
networks, or mass public health campaigns.

A limitation to this study is that demographic and
indication-specific data was self-report. Self-report data is
common in digital health studies, and the consensus is that data
from subjects is at least as reliable as pencil-and-paper
questionnaires [115-122]. However, due to the anonymous
nature and nonrandomization of study subjects, results should
be interpreted with caution.

Conclusions
Based on the large number of study participants, variation in
DHSN theme, and extensive time-period, we did not find strong
evidence that demographic characteristics or indication severity
sufficiently explain the variability in number of posts per actor.
Researchers should investigate alternative methods and models
that may identify individuals who promote DHSN growth.
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