69 research outputs found

    Plasma processes for novel detector fabrication

    Get PDF
    Plasmas have a wide range of uses from fluorescent light tubes to high technology semiconductor fabrication. In this work I will attempt to discuss a number of plasma processes which have been developed for standard semiconductor fabrication over recent years and apply them to producing detectors in a novel fashion. This will encompass the alteration of older existing processes used on silicon (Si) for use with a new detector material, silicon carbide (SiC). The other application which will be investigated is the use of processes to fabricate devices in indium tin oxide (ITO) which is a transparent conductive semiconductor used in making screens for laptop computers for a new application. ITO will used to produce a range of microelectrode arrays which can be used in neurophysiology studies using retinal tissue

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Testbeam evaluation of silicon strip modules for ATLAS Phase - II Strip Tracker Upgrade

    No full text
    The planned HL-LHC (High Luminosity LHC) is being designed to maximise the physics potential of the LHC with 10 years of operation at instantaneous luminosities of \mbox{7.5×1034  cm2s17.5\times10^{34}\;\mathrm{cm}^{-2}\mathrm{s}^{-1}}. A consequence of this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron equivalences to over 1x10151x10^{15} 1 MeV neutron equivalent per cm2cm^{2} in the ATLAS Strips system. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II test beam facility to investigate the detailed performance of a strip module with both 2.5cm and 5cm length strips before irradiation. The DURANTA telescope was used to obtain a pointing resolution of 2μ\mum, with an additional pixel layer installed to improve timing resolution to \sim25ns. Results will show that prior to irradiation a wide range of thresholds (0.5-2.0 fC) meet the requirements of a noise occupancy less than 1x1031x10^{-3} and a hit efficiency greater than 99\%
    corecore