116 research outputs found

    Reconstructing the thermal Green functions at real times from those at imaginary times

    Get PDF
    By exploiting the analyticity and boundary value properties of the thermal Green functions that result from the KMS condition in both time and energy complex variables, we treat the general (non-perturbative) problem of recovering the thermal functions at real times from the corresponding functions at imaginary times, introduced as primary objects in the Matsubara formalism. The key property on which we rely is the fact that the Fourier transforms of the retarded and advanced functions in the energy variable have to be the `unique Carlsonian analytic interpolations' of the Fourier coefficients of the imaginary-time correlator, the latter being taken at the discrete Matsubara imaginary energies, respectively in the upper and lower half-planes. Starting from the Fourier coefficients regarded as `data set', we then develop a method based on the Pollaczek polynomials for constructing explicitly their analytic interpolations.Comment: 23 pages, 2 figure

    The European GreenBuilding: Projects Catalogue: September 2012– December 2013

    Get PDF
    This document describes some of the projects implemented by GreenBuilding Partners in the period September 2012 to December 2013. The projects have been implemented in different types of buildings, such as office buildings, schools, hotels, shopping mall, etc. Both new construction and the refurbishment of existing buildings are covered by the report.JRC.F.7-Renewables and Energy Efficienc

    The European GreenBuilding Projects Catalogue 2014

    Get PDF
    In 2005 the European Commission launched the GreenBuilding Programme (GBP). GreenBuilding is a voluntary programme aiming at improving the energy efficiency of non-residential buildings in Europe on voluntary basis. The programme addresses owners of non-residential buildings to realise cost-effective measures which enhance the energy efficiency of their buildings in one or more technical services. The programme covers both existing and new buildings. The GreenBuilding Programme reached its 8th year of activity and has now achieved its original target of collecting data from over 1000 buildings. The Joint Research Centre (JRC) has therefore decided to close down the GreenBuilding Programme by 1st of October 2014.JRC.F.7-Renewables and Energy Efficienc

    Instrumented indentation of transforming and no-transforming phases in Cu-Al-Be shape-memory alloys

    Get PDF
    The behavior of Cu-Al-Be alloys under instrumented indentation using a Berkovich tip was studied. The pseudoelastic effect was evidenced in the transforming β Cu-Al-Be phase as a closed hysteresis loop between the unloading-reloading paths in the P-h curves and high depth recovery ratios. From series of indentations conducted in the (β + γ 2) specimens, it was found that the indentation response of the two phases is remarkably different. Unlike the pseudoelastic β phase, γ 2 precipitates present an elastic-plastic behavior, obtaining a complete coincidence between the unload and reload path in the load-displacement curves, and a lower recovery capacity. An average contact pressure versus the penetration depth curve was estimated for each indentation curve, and results suggest that 8 GPa and 3 GPa can be considered an elastic limit for γ 2 and β phase respectively under Berkovich indenter stress state. The elastic modulus and the hardness of both phases were estimated from load-displacement curves using the Oliver and Pharr method.Fil: Montecinos Espinoza, Susana de Los Angeles. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Física de Materiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Cuniberti, Adela Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Física de Materiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Simison, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin

    Localization of Electronic States in Chain Model Based on Real DNA Sequence

    Full text link
    We investigate the localization property of an electron in the disordered two-chain system (ladder model) with long-range correlation as a simple model for electronic property in DNA sequence. The chains are constructed by repetition of the sugar-phosphate sites, and the inter-chain hopping at the sugar sites come from nucleotide pairs, i.e., ATA-T or GCG-C pairs. It has been found that some DNA sequences have long-range correlation. In this paper we use some actual DNA sequences such as bacteriophages of escherichia coli, human omosome 22 and histone protein as the correlated sequence for the interchain hopping at the sugar sites. We will present some numerical results for the Lyapunov exponent (inverse localization length) of the wave function in the cases in comparison to the results for artificial sequence generated by an asymmetric modified Bernoulli map. It is shown that the correlation and asymmetry of the sequence affect on the localization in both the artificial and real DNA sequences.Comment: 12 pages, 4 figure

    Monitoring microbial metabolites using an inductively coupled resonance circuit

    Get PDF
    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power

    Photo--assisted current and shot noise in the fractional quantum Hall effect

    Full text link
    The effect of an AC perturbation on the shot noise of a fractional quantum Hall fluid is studied both in the weak and the strong backscattering regimes. It is known that the zero-frequency current is linear in the bias voltage, while the noise derivative exhibits steps as a function of bias. In contrast, at Laughlin fractions, the backscattering current and the backscattering noise both exhibit evenly spaced singularities, which are reminiscent of the tunneling density of states singularities for quasiparticles. The spacing is determined by the quasiparticle charge νe\nu e and the ratio of the DC bias with respect to the drive frequency. Photo--assisted transport can thus be considered as a probe for effective charges at such filling factors, and could be used in the study of more complicated fractions of the Hall effect. A non-perturbative method for studying photo--assisted transport at ν=1/2\nu=1/2 is developed, using a refermionization procedure.Comment: 14 pages, 6 figure

    Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model

    Full text link
    In this work we investigate the electronic transport along model DNA molecules using an effective tight-binding approach that includes the backbone on site energies. The localization length and participation number are examined as a function of system size, energy dependence, and the contact coupling between the leads and the DNA molecule. On one hand, the transition from an diffusive regime to a localized regime for short systems is identified, suggesting the necessity of a further length scale revealing the system borders sensibility. On the other hand, we show that the lenght localization and participation number, do not depended of system size and contact coupling in the thermodynamic limit. Finally we discuss possible length dependent origins for the large discrepancies among experimental results for the electronic transport in DNA sample

    VADER: a variable dose-rate external 137Cs irradiator for internal emitter and low dose rate studies.

    Get PDF
    In the long term, 137Cs is probably the most biologically important agent released in many accidental (or malicious) radiation disasters. It can enter the food chain, and be consumed, or, if present in the environment (e.g. from fallout), can provide external irradiation over prolonged times. In either case, due to the high penetration of the energetic γ rays emitted by 137Cs, the individual will be exposed to a low dose rate, uniform, whole body, irradiation. The VADER (VAriable Dose-rate External 137Cs irradiatoR) allows modeling these exposures, bypassing many of the problems inherent in internal emitter studies. Making use of discarded 137Cs brachytherapy seeds, the VADER can provide varying low dose rate irradiations at dose rates of 0.1 to 1.2 Gy/day. The VADER includes a mouse "hotel", designed to allow long term simultaneous residency of up to 15 mice. Two source platters containing ~ 250 mCi each of 137Cs brachytherapy seeds are mounted above and below the "hotel" and can be moved under computer control to provide constant low dose rate or a varying dose rate mimicking 137Cs biokinetics in mouse or man. We present the VADER design and characterization of its performance over 18 months of use
    corecore